Telomeres and Early-Life Stress: An Overview

Lawrence H. Price, Hung-Teh Kao, Darcy E. Burgers, Linda L. Carpenter, and Audrey R. Tyrka

The long-term sequelae of adverse early-life experiences have long been a focus in psychiatry, with a historic neurobiological emphasis on physiological systems that are demonstrably stress-responsive, such as the hypothalamic-pituitary-adrenal axis and neuroimmune function. However, there has been increasing recognition in the general medical literature that such sequelae might encompass more pervasive alterations in health status and physiology. Recent findings in telomere biology have suggested a new avenue for exploring the adverse health effects of childhood maltreatment. Telomere length in proliferative tissues declines with cell replication and the effect can be accelerated by such factors as inflammation, oxidative stress, radiation, and toxins. Reduced telomere length, as a proxy for cellular aging, has been associated with numerous chronic somatic diseases that are generally considered to be diseases of aging, such as diabetes, cancer, and heart disease. More recently, shorter telomeres have been demonstrated in several psychiatric conditions, particularly depression. Sustained psychosocial stress of a variety of types in adulthood appears to be associated with shorter telomeres. Now, emerging work suggests a robust, and perhaps dose-dependent, relationship with early-life stress. These findings present new opportunities to reconceptualize the complex relationships between experience, physical and psychiatric disease, and aging.

Key Words: Childhood adversity, childhood maltreatment, early-life stress, stress, telomerase, telomere

Telomeres: Basic Concepts

Telomeres (from the Greek telos [end] and meros [part]) are DNA protein complexes at the ends of chromosomes, composed of tandem TTAGGG repeats ranging from a few to 15 kilobases in length. Their critical role in maintaining chromosomal stability was first described in the 1930s by McClintock (11) and Muller (12). It is now established that telomeres shorten with each cell division (13) and that maintenance of telomere function depends on both a minimal telomere length of TTAGGG repeats and telomere-binding proteins (14). Telomere length can be maintained by the enzyme telomerase, a ribonucleoprotein reverse transcriptase mainly expressed in stem cells, germ cells, and regenerating tissues. However, there is insufficient telomerase in somatic cells to indefinitely maintain telomere length, and most tissues have very low telomerase levels. Consequently, telomeres shorten with age in most somatic tissues, and telomere length can serve as a kind of biological counter, ticking off the passage of time with each cell division (15). Telomere shortening is also influenced by recombination, epigenetic regulation, and genetic factors, as well as oxidative stress, and the ability of telomerase to counteract these influences is limited.

Measurement of Telomere Length

For years, the gold standard for measuring telomere length has been the Southern blot. There are significant limitations to this method: it is time consuming and labor intensive, significant amounts of genomic DNA are required, deducing telomere length from a Southern blot smear is problematic, and there are potential issues of reproducibility. Cawthon (16) developed an easier method utilizing quantitative polymerase chain reaction (PCR), which mimics DNA replication. The method developed by Cawthon (16) entails separate PCRs to measure telomeres (T), which are normalized to a single copy gene (S), yielding a T/S ratio as a measure of telomere length. Quantitative PCR demonstrates good correlation with results from Southern blot analyses and is now widely used. However, this method has greater measurement error than the Southern blot and can show substantial variability across laboratories (17), necessitating careful quality controls and multiple sampling to assure reliability.
There are also methods employing hybridization coupled with cytometry (18,19), designed to measure the shortest telomeres and telomeres from specific chromosomes. Once the shortest telomeres are depleted, cells either die or become senescent, so the length of the shortest telomeres is a better indicator of cellular aging than average telomere length. A more detailed discussion of telomere measurement is available in Aubert et al. (20). Most psychiatric studies examining telomere length have used either Southern blot analyses or the Cawthon (16) quantitative PCR method. Since individual laboratories internally calibrate their measurements of telomere length, it can be difficult to compare measurements across groups.

Cross-Sectional Versus Longitudinal Approaches in Studies of Telomere Length

A major drawback to using telomere length as a clinical measure is the high variability between individuals, which is present at birth (21,22). Moreover, although telomere length is equal between the sexes at birth, shortening with age occurs more rapidly in male than female individuals, and rates may also differ between ethnic groups (23). These factors limit the power of cross-sectional studies, which utilize measurements at a single time point. Such studies require large sample sizes because of the marked variability of telomere length, as well as careful control subjects for age and sex. Aviv et al. (22) estimates that longitudinal studies, measuring actual telomere erosion rates within individuals over time, would require five times fewer subjects than cross-sectional studies. Longitudinal studies also better support an assertion of causality by the independent variable of interest, which is severely constrained in cross-sectional designs.

Despite these considerations, very few longitudinal telomere studies have been conducted, and their dearth is particularly evident in work involving psychiatric or stress-related conditions. An alternative approach would be to standardize telomere length in an easily accessible proliferative tissue, representing the effects of exposure to the variable of interest against telomere length in a postmitotic source, since telomere lengths in such tissues change little from birth. However, obtaining samples from postmitotic tissues (i.e., nerves, skeletal muscle, bone) presents practical obstacles. Indeed, even peripheral blood can be difficult to obtain in a longitudinal approach.

Telomeres and Somatic Disease

Because of their prominence in aging (24), telomeres have been intensively investigated in medical conditions associated with aging. Most clinical studies have utilized telomeres derived from leukocytes, since peripheral blood is more easily obtained than most other tissues. The major determinants of aging, including cell replication, inflammation, and oxidative stress, are all demonstrable in leukocyte telomeres (15,24,25). A potential pitfall to this approach is that telomere length may differ among different leukocyte subsets, so that factors favoring predominance of one subset over another can introduce bias (22). If such a factor is of major interest (e.g., human immunodeficiency virus), telomere length might be more appropriately ascertained in a specific subset. Similarly, since telomere length reflects the leukocyte’s replicative history, any condition that increases leukocyte turnover can introduce bias. Controlling for factors that alter leukocyte turnover or subsets (e.g., acute or chronic inflammatory conditions) can help minimize bias. An alternative approach is to use buccal mucosa cells obtained by oral swab, which is less invasive than venipuncture and therefore ideal for studies with children (26–28), although at present there is less experience with this tissue source.

A key finding from clinical studies is that alteration of leukocyte telomere dynamics reflects organ dysfunction elsewhere in the body (25). A prime example is cardiovascular disease, in which reduced telomere length is observed not only in leukocytes but also in myocardial and arterial wall tissue (29,30). Findings in other medical conditions, including cancers (31,32), stroke (33,34), diabetes (35–37), and autoimmune diseases (38), support the notion that reduced telomere length in leukocytes correlates with shorter telomeres in the target tissue.

A possible explanation for this observation could be that common underlying mechanisms for these diseases also manifest themselves in leukocytes. For example, oxidative stress, which is caused by age-related mitochondrial dysfunction, is involved in diabetes, cardiovascular disease, and cancer and affects tissues in general. Telomerase could also be involved, perhaps as a mediating agent. Indeed, some evidence implicates telomerase in the cell survival-promoting actions of brain-derived neurotrophic factor in early postmitotic hippocampal neurons (39), which could be relevant to the association of telomere length with stress and depression, as discussed below.

While telomere length in these conditions could be merely a disease marker (i.e., an indicator of ongoing disease), other evidence implicates telomere length as a risk marker (i.e., a predictor of the likelihood of disease despite current clinical health). For example, in a study of healthy older adults, Cawthon et al. (40) found telomere length highly predictive of eventual mortality, even though cause of death was variable. Other studies implicate telomere length as a risk marker for cancer (41,42) and hypertension (43). Reports of reduced telomere length in association with smoking (44), obesity (45), and alcohol abuse (46) are consistent with these conditions as risk factors for increased mortality.

Telomere dysfunction can play a causal role in disease. Telomerase deficiency has been causally linked with the genetic disorder dyskeratosis congenita, familial idiopathic pulmonary fibrosis, and familial bone marrow failure syndromes (15). Progeroid syndromes, characterized by clinical manifestations of accelerated aging and

Table 1. Telomeres and Psychiatric Conditions

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>References</th>
<th>Total n</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDD</td>
<td>49–51, 53–58</td>
<td>MDD = 700 (including 204 with stable CHD)</td>
<td>Shorter telomeres associated with MDD: 5 studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HC = 1765 (including 746 with stable CHD)</td>
<td>No difference in telomere length: 3 studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased telomerase activity with MDD: 1 study</td>
</tr>
<tr>
<td>BIP</td>
<td>50, 52, 58</td>
<td>BIP = 103</td>
<td>Shorter telomeres associated with BIP: 2 studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HC = 118</td>
<td>No difference in telomere length: 1 study</td>
</tr>
<tr>
<td>SCZ</td>
<td>58–60</td>
<td>SCZ = 145</td>
<td>Shorter telomeres associated with SCZ: 2 studies*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HC = 187</td>
<td>No difference in telomere length: 1 study</td>
</tr>
</tbody>
</table>

BIP, bipolar disorder (I and II); CHD, coronary heart disease; HC, healthy control subjects; MDD, major depressive disorder; SCZ, schizophrenia.

*Only in treatment-resistant patients in one study.
molecular evidence of defective DNA repair, may also reflect causal involvement of telomeres (15). A preliminary report suggests an increased rate of neuropsychiatric disorders in dyskeratosis congenita (47). At this point, it would be premature to exclude an etiologic contribution of telomere dysfunction in other conditions.

Telomeres and Psychiatric Conditions

Independent of stress, most of the findings implicating telomeres in psychiatry have involved mood disorders (Table 1). In an initial epidemiological study (n = 433), Lung et al. (48) reported an association of reduced telomere length with the high-activity allele of the monoamine oxidase A promoter polymorphism, which has been linked to aggression and impulsivity; this association was later found mediated by MDD (49). Simon et al. (50) demonstrated shorter telomeres in patients with MDD (n = 15) or bipolar disorder (type I or II not stated) (n = 29) compared with healthy control subjects (n = 44) (50). This was replicated by Hartmann et al. (51), who found no effect of illness duration or severity or nature or intensity of treatment in a study comparing MDD patients (n = 54) with control subjects (n = 20). Elvsåshagen et al. (52), describing reduced telomere length in bipolar II patients (n = 28) compared with control subjects (n = 28), detected an association with lifetime number of depressive episodes but not illness duration. Wikgren et al. (53), reporting shorter telomeres in MDD patients (n = 91) versus control subjects (n = 451), also noted an association with hypocortisolism in both groups. Wolkowitz et al. (54) found no difference in telomere length between drug-free MDD (n = 18) and control (n = 17) subjects but inverse correlations with lifetime depression exposure and measures of oxidative stress and inflammation. This group also reported increased telomerase activity in drug-free MDD patients versus control subjects, with superior antidepressant responses in patients showing the greatest further increases (55). In an epidemiological study of 952 patients with coronary heart disease, Hoen et al. (56) found MDD associated with shorter telomeres. While these studies all utilized leukocytes, no differences from control subjects were found in telomere length in occipital cortex of patients with MDD (n = 24) (57) or in cerebellar gray matter of patients with MDD (n = 15), bipolar disorder (n = 46), or schizophrenia (n = 46) (58).

Shorter leukocyte telomeres have been reported in schizophrenia (59), treatment-resistant schizophrenia (60), obstructive sleep apnea (61), migraine (62), mild cognitive impairment (63), and Alzheimer disease (64) (one study failed to replicate the latter two findings (65)). Reduced telomere length correlated with decreased mental health in chronic heart failure (66) (but not in community-dwelling elderly men [67]), poorer cognition in community-dwelling elders (68) and healthy women (69), unspecified poor sleep quality in healthy women (70), and pessimism in postmenopausal women (71). It remains to be clarified whether the shorter telomeres observed in these heterogeneous conditions reflect a spe-

Table 2. Telomeres and Psychosocial Stress

<table>
<thead>
<tr>
<th>Type of Stress</th>
<th>References</th>
<th>Total n</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caregiver Stress</td>
<td>72, 74, 78–80</td>
<td>Stressed = 126<sup>a</sup> Control subjects = 64<sup>a</sup></td>
<td>Shorter telomeres associated with perceived stress: 1 study Shorter telomeres associated with caregiver status: 1 study Telomere length not associated with caregiver status: 1 study Reduced telomerase activity associated with perceived stress: 1 study Reduced telomerase activity associated with caregiver status: 1 study Increased telomerase activity associated with caregiver status: 1 study Shorter telomeres associated with greater salivary cortisol response to TSST: 1 study Shorter telomeres associated with higher anticipatory threat appraisal to the TSST: 1 study</td>
</tr>
<tr>
<td>TSST</td>
<td>73</td>
<td>Stressed = 62</td>
<td>Shorter telomeres and reduced telomerase activity associated with increased nocturnal urinary cortisol and catecholamines: 1 study Shorter telomeres associated with increased heart rate and cortisol reactivity</td>
</tr>
<tr>
<td>Laboratory Challenge Tasks</td>
<td>26</td>
<td>78 (children)</td>
<td>Shorter telomeres associated with greater dietary restraint: 1 study</td>
</tr>
<tr>
<td>Dietary Restraint (Preoccupation with Weight, Restricted Food Intake)</td>
<td>75</td>
<td>Stressed = 56</td>
<td></td>
</tr>
<tr>
<td>Perceived Stress (PSS)</td>
<td>76</td>
<td>647</td>
<td>Shorter telomeres associated with perceived stress: 1 study Shorter telomeres associated with interpersonal violence: 1 study</td>
</tr>
<tr>
<td>Interpersonal Violence</td>
<td>77</td>
<td>Stressed = 61 Control subjects = 41</td>
<td>Shorter telomeres associated with PTSD following rape: 1 study</td>
</tr>
<tr>
<td>Rape</td>
<td>81</td>
<td>Stressed = 64 (9 with PTSD)</td>
<td>Shorter telomeres associated with chronic pain + high stress: 1 study</td>
</tr>
<tr>
<td>Chronic Pain</td>
<td>82</td>
<td>Stressed = 18 Control subjects = 18</td>
<td></td>
</tr>
<tr>
<td>Hostility</td>
<td>83</td>
<td>434</td>
<td>Shorter telomeres and increased telomerase activity associated with hostility in men: 1 study</td>
</tr>
<tr>
<td>SES</td>
<td>27, 85</td>
<td>1622</td>
<td>Shorter telomeres associated with lower SES: 2 studies</td>
</tr>
<tr>
<td>Minority Ethnicity</td>
<td>23</td>
<td>African American = 117 Caucasian = 115</td>
<td>Shorter telomeres associated with African American ethnicity (trend): 1 study</td>
</tr>
<tr>
<td>Educational Attainment</td>
<td>86, 87</td>
<td>5046</td>
<td>Shorter telomeres associated with lower educational attainment: 2 studies</td>
</tr>
<tr>
<td>Employment/Work Schedule</td>
<td>88</td>
<td>608</td>
<td>Shorter telomeres associated with current and long-term full-time work schedule: 1 study</td>
</tr>
</tbody>
</table>

PSS, Perceived Stress Scale; PTSD, posttraumatic stress disorder; SES, socioeconomic status; TSST, Trier Social Stress Test.

^an_s estimated due to overlapping samples.
It is established that biophysical stress and stressors (e.g., radiation, toxins) (31,32) can impact telomere dynamics. However, Epel et al. (72), in a study of mothers caring for either a chronically ill (n = 39) or healthy (n = 19) child, were the first to demonstrate shorter telomeres (and reduced telomerase activity) in association with psychological stress (Table 2). In a follow-up study of 62 women, these investigators found that reduced telomere length correlated with increased nocturnal urinary cortisol and catecholamines, while low telomerase activity correlated with increased nocturnal urinary epinephrine and greater decreases in heart rate variability during the Trier Social Stress Test (TSST) (73). Subsequent studies have examined telomere length and telomerase activity in various stress-related contexts. Damjanovic et al. (74) reported shorter telomeres and increased telomerase activity in caregivers of Alzheimer’s disease patients (n = 41) compared with control subjects (n = 41). Kiefer et al. (75), in a study of 56 women, observed reduced telomere length with greater dietary restraint, defined as chronic preoccupation with weight and attempts at restricting food intake leading to chronic psychological stress. In an epidemiological study of 647 sisters of women with breast cancer, Parks et al. (76) found that reduced telomere length correlated with perceived stress, especially in women who were >55 years old, had a recent major loss, or had higher morning urinary epinephrine levels. Humphreys et al. (77) detected shorter telomeres in women with a history of intimate partner violence (n = 61) compared with control subjects (n = 41). In a study of female caregivers of dementia partners (n = 14) and control subjects (n = 9), Tomiyama et al. (78) found that shorter telomeres were associated with greater salivary cortisol responses to the TSST and higher overnight urinary free cortisol. In one expanded sample from this study (n = 22 caregivers, n = 22 control

Table 3. Studies Examining the Relationship Between Telomere Length and Early-Life Stress

<table>
<thead>
<tr>
<th>Author</th>
<th>Sex Distribution</th>
<th>Presence of ELS in Sample</th>
<th>Age at Telomere Measurement (X ± SD or Range, Years)</th>
<th>Type of ELS and Assessment Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrka et al. (2010)</td>
<td>9 M, 22 F</td>
<td>10/31</td>
<td>26.9 ± 10.1</td>
<td>Emotional/physical/sexual abuse, emotional/physical neglect; CTQ subscales</td>
</tr>
<tr>
<td>Glass et al. (2010)</td>
<td>Not specified</td>
<td>20/540 (physical abuse); 34/550 (sexual abuse)</td>
<td>Not specified</td>
<td>Physical/sexual abuse; individual survey questions</td>
</tr>
<tr>
<td>Kanannen et al. (2010)</td>
<td>617 F (202 Anx), 357 M (119 Anx)</td>
<td>1.94 adverse events (Anx); 97 adverse events (control subjects)</td>
<td>49.7 ± 12.8 (Anx); 49.8 ± 12.6 (control subjects)</td>
<td>Adverse childhood social environment (financial difficulties, parental unemployment, parental physical/mental illness, familial conflict, bullying, personal illness); sum of individual survey questions</td>
</tr>
<tr>
<td>Kiecolt-Glaser et al. (2011)</td>
<td>37 M, 95 F</td>
<td>42/132 (abuse); 74/132 (adverse event)</td>
<td>70.10 ± 9.41 (caregivers); 69.37 ± 10.73 (control subjects)</td>
<td>Emotional/physical/sexual abuse, childhood adversity (parental death, parental marital conflict, familial mental illness, familial alcohol problems, lack of close relationship with adult); CTQ; sum of individual survey questions</td>
</tr>
<tr>
<td>Surtees et al. (2011)</td>
<td>0 M, 4441 F</td>
<td>2234/4441</td>
<td>62 (median)</td>
<td>Childhood social adversity (separation from mother for >1 year, extended hospital stays, parental unemployment, traumatic events, removal from home, divorce, parental substance use, physical abuse); HLEQ; sum of individual interview items on Life Stressor Checklist interview</td>
</tr>
<tr>
<td>O’Donovan et al. (2011)</td>
<td>43 M (22 PTSD), 45 F (20 PTSD)</td>
<td>50 trauma reports (PTSD); 6 trauma reports (control subjects)</td>
<td>30.40 ± 6.63 (PTSD); 30.68 ± 8.19 (control subjects)</td>
<td>Physical neglect, physical abuse, family violence, forced sexual touch, forced sexual intercourse; sum of individual interview items on Life Stressor Checklist interview</td>
</tr>
<tr>
<td>Drury et al. (2011)</td>
<td>67 M, 69 F</td>
<td>136/136</td>
<td>6–10</td>
<td>Time spent in institutionalized care</td>
</tr>
<tr>
<td>Entringer et al. (2011)</td>
<td>21 M, 73 F</td>
<td>45/94</td>
<td>25 ± .8 (pregnatal stress); 24 ± .6 (controls)</td>
<td>Exposure to prenatal stress during mother’s pregnancy (defined as experience of negative life events, such as death/illness in family, loss of residence, etc.); interview</td>
</tr>
<tr>
<td>Shalev et al. (2012)</td>
<td>120 M, 116 F</td>
<td>108/236</td>
<td>Baseline; 5; Follow-up: 10</td>
<td>Exposure to domestic violence between mother and her partner, frequent bullying victimization, physical maltreatment by an adult; CTQ, interview</td>
</tr>
</tbody>
</table>

Anx, anxiety disorder (full or subthreshold); BMI, body mass index; CAPS, Clinician-Administered PTSD Scale; CES-D, Center for Epidemiologic Studies Depression Scale; CTQ, Childhood Trauma Questionnaire; CTS, Conflict Tactics Scale; ELS, early-life stress; F, female; GAD, generalized anxiety disorder; HDL, high-density lipoproteins; HLEQ, Health and Life Experiences Questionnaire; IL-6, interleukin-6; LDL, low-density lipoproteins; M, male; M-CIDI, Munich-Composite International Diagnostic Interview; MDD, major depressive disorder; PTSD, posttraumatic stress disorder; qPCR, quantitative polymerase chain reaction; SCID, Structured Clinical Interview for DSM-IV; SES, socioeconomic status; SF-36, Short Form Health Survey.
Table 3. (continued)

<table>
<thead>
<tr>
<th>Sample Composition and Assessment of Psychopathology</th>
<th>Controlled Covariates</th>
<th>Telomere Measurement Method</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>No current or past major Axis I disorder; SCID</td>
<td>Age, sex, oral contraceptives, smoking, BMI, race, education, SES, perceived stress</td>
<td>qPCR; leukocytes</td>
<td>Shorter telomeres associated with ELS.</td>
</tr>
<tr>
<td>Epidemiological sample; psychopathology not specified</td>
<td>Age, sex, BMI, smoking</td>
<td>Southern blot; leukocytes</td>
<td>Telomere length no different between subjects with and without ELS.</td>
</tr>
<tr>
<td>Anxiety disorder (full or subthreshold) versus control subjects; assessed MDD/dysthymia, alcohol use disorder; M-CIDI</td>
<td>Comorbid disorders, psychiatric medication, BMI, blood pressure, blood chemistries (homocysteine, triglycerides, HDL, LDL, glucose, insulin), diabetes, lifestyle factors (smoking, sleep, exercise)</td>
<td>qPCR; leukocytes</td>
<td>Shorter telomeres associated with ELS (≥2 childhood adversities; abuse without other adversities not associated with telomere length). Shorter telomeres associated with increased plasma IL-6.</td>
</tr>
<tr>
<td>Caregivers versus control subjects; assessed depressive symptoms; CES-D</td>
<td>Age, sex, BMI, exercise, sleep, alcohol use, caregiving status</td>
<td>Southern blot; leukocytes</td>
<td>Shorter telomeres associated with ELS (greater number of childhood adverse events).</td>
</tr>
<tr>
<td>Epidemiological sample; assessed MDD, GAD; HLEQ, SF-36</td>
<td>Age, physical health score, self-reported health, social class, obesity, smoking, preexisting disease</td>
<td>qPCR; leukocytes</td>
<td>Shorter telomeres associated with ELS (greater number of childhood adverse events).</td>
</tr>
<tr>
<td>PTSD versus control subjects; assessed alcohol/substance abuse/dependence, MDD; CAPS, SCID</td>
<td>Age, sex, BMI, smoking, education</td>
<td>qPCR; leukocytes</td>
<td>Shorter telomeres associated with ELS (greater number of ELS types); shorter telomeres in PTSD versus control subjects (accounted for by effect of ELS).</td>
</tr>
<tr>
<td>Psychopathology not specified</td>
<td>Institutionalized versus foster care, ethnicity, age at telomere collection, low birth weight</td>
<td>qPCR; buccal cells</td>
<td>Shorter telomeres associated with ELS (greater time in institutionalized care).</td>
</tr>
<tr>
<td>Assessed depressive symptoms; CES-D</td>
<td>Age, BMI, birth weight percentile, early-life and concurrent life stress</td>
<td>qPCR; leukocytes</td>
<td>Shorter telomeres associated with ELS (prenatal stress); effect greater in females than males.</td>
</tr>
<tr>
<td>Subset of epidemiological sample; psychopathology not specified</td>
<td>Age, sex, BMI, SES</td>
<td>qPCR; buccal cells</td>
<td>Telomere shortening from age 5 to age 10 associated with exposure to ≥2 forms of violence.</td>
</tr>
</tbody>
</table>

subjects), telomerase activity was lower at baseline in caregivers but rose similarly in both groups during the TSST (79); in another expanded sample (n = 27 caregivers, n = 23 control subjects), reduced telomere length correlated with higher anticipatory threat appraisal, which correlated, in turn, with caregiver status, even though telomere length did not differ between the two groups (80). Kroenke et al. (26) found that buccal telomere length was inversely correlated with heart rate and cortisol reactivity in 78 children during mildly stressful laboratory challenge tasks. Malan et al. (81) observed shorter telomeres in women who developed posttraumatic stress disorder (PTSD) following rape (n = 9) compared with those who did not (n = 53). In a study of patients with (n = 18) and without (n = 18) chronic osteoarthritis pain, Sibille et al. (82) found reduced telomere length in those with chronic pain and high stress versus those with no pain and low stress. Reasoning that hostility correlates with heightened stress reactivity, Brydon et al. (83) found hostility inversely correlated with telomere length and positively correlated with telomerase activity, in men but not women, in an epidemiological sample of 434 adults. Supporting these observational findings in humans, Kotrschal et al. (84) showed that a 6-month exposure to reproductive stress in female mice and crowding stress in male mice induced telomere shortening compared with unstressed control mice.

Reduced telomere length has been correlated with several sociodemographic variables thought to represent proxies for sustained psychosocial stress, including lower socioeconomic status (27,85), African American ethnicity (23), lower educational attainment (86,87), and current and long-term full-time work schedule (88).

Telomeres and Early-Life Stress

Tyrka et al. (89) offered the first evidence linking early-life stress with reduced telomere length, in a study of physically and psychiatrically healthy adults with (n = 10) or without (n = 21) a reported history of childhood maltreatment (Table 3). Eight other studies have since appeared examining this issue, a remarkable number given the short time interval. In response to Tyrka et al. (89), Glass et al. (90) presented data on adults from the Twins United Kingdom

www.sobp.org/journal
cohort in which they detected no difference in telomere length between individuals who endorsed childhood sexual (n = 34) or physical abuse (n = 20) compared with those who did not (n = 516 and n = 520, respectively). However, Kananen et al. (91) confirmed an association of shorter telomere length with increasing number of reported childhood adverse life events in n = 974 adults in the Finnish Health 2000 project, even absent a relationship with current psychological distress or DSM-IV anxiety disorder diagnosis. Kiecolt-Glaser et al. (92) reported that shorter telomeres were associated with multiple childhood adversities in a study comprising dementia family caregivers (n = 58) and control subjects (n = 74). Surtees et al. (93), studying 4441 women in the United Kingdom European Prospective Investigation into Cancer-Norfolk database, found that shorter telomeres correlated with increased reported childhood adverse experiences, although not with current social adversity or emotional health. Consistent with Malan et al. (81), O’Donovan et al. (94) observed reduced telomere length in adults with chronic PTSD (n = 43) versus healthy control subjects (n = 47); however, this was accounted for by those PTSD subjects reporting multiple categories of childhood trauma (n = 18). In the first study to show effects of early adversity on telomere length in children, Drury et al. (95) found that greater time spent in institutional care correlated with reduced buccal cell telomere length in 100 children aged 6 to 10 years in the prospective Bucharest Early Intervention Project. Extending the period of vulnerability, Entringer et al. (96) demonstrated that maternal experience of severe psychosocial stress during pregnancy was associated with shorter telomeres in young adult offspring (n = 45) versus control subjects (n = 49). In the only prospective longitudinal study thus far, involving 236 children tested at age 5 and again at age 10 years, Shalev et al. (28) found greater buccal cell telomere shortening in children exposed to >2 forms of violence (n = 39) compared with those unexposed (n = 128) or less exposed (n = 69). Taken together, these studies support a relationship between early-life stress and reduced telomere length and strongly suggest that this effect is dose-dependent.

Telomeres and Early-Life Stress: Mechanisms

In their review of the neurobiological interrelationship between stress, depression, and aging, Wolkowitz et al. (97) observe that many of the biochemical derangements in depression, and in chronic stress, result in cellular effects indistinguishable from aging. Indeed, they propose that the high comorbidity of depression with diseases of aging, such as cardiovascular disease, cerebrovascular disease, and metabolic syndrome, suggests that stress-engendered depression is itself such a disease. In this conceptualization, telomere shortening would be an expected concomitant, and/or consequence, of the hypothalamic-pituitary-adrenal axis dysregulation, enhanced glutamatergic excitotoxicity, increased oxidative stress, impaired neurotrophin function, and immune dysregulation reported in chronic stress and depression. Supporting this is evidence that cortisol can reduce telomerase activity (78,98).

However, while examination of the biochemistry of aging and telomere dynamics (15,24,25,31,32) is beyond the present scope, there has yet to be direct demonstration of these mechanisms in affected human subjects or relevant animal models. Similarly, even as attention has turned to the role of epigenetics as a major transductive mechanism for adult sequelae of early-life stress (99,100), there are still no direct studies of telomere dynamics in this regard. Finally, as noted above, problematic lifestyle factors (e.g., smoking, obesity, alcohol abuse) are frequent sequelae of early-life stress. While most studies of telomere length and early-life stress controlled for such influences, it remains possible that these or other factors could account for the association between reduced telomere length and early-life stress.

Telomeres and Early-Life Stress: Methodological Issues

Nearly all of the clinical and epidemiological studies examining health implications of telomere length have been cross-sectional in design with respect to telomere assessment, limiting the ability to draw causal inferences about telomere shortening; the same is true for all but one (28) of the nine studies addressing the effects of early-life stress. Analogously, assessment of early-life stress can be either prospective or retrospective; all but two (28,95) of the studies in this area have been retrospective.

The limitations of cross-sectional versus longitudinal measurement of telomere length have been discussed. How early-life stress is retrospectively ascertained and assessed is highly variable across studies, but more systematic and comprehensive approaches seem more likely to compensate for the bias toward false negatives (101). Several studies have found an effect of the number of discrete childhood adversities, suggesting that early stressors may have additive effects on telomere length. Ideally, assessment tools should have demonstrable validity and reliability; short of that, ascertainment methods requiring the least amount of judgment or interpretation by the subject are preferable. Such considerations may explain why Glass et al. (90) failed to replicate an association between early-life stress and reduced telomere length. Timing and type of early-life stress and the impact of mitigating psychosocial or genetic factors (resilience factors) (102) could also affect findings.

Effects of Therapeutic Stress Reduction on Telomeres

Epley et al. (103) have proposed that therapeutic interventions designed to mitigate adverse effects of psychosocial stress (e.g., threat appraisal, rumination, negative affect, stress arousal) might promote telomere maintenance. Supporting this, vigorous exercise attenuated the correlation between perceived stress and reduced telomere length in a sample of 63 healthy women (104). In a prospective study, Jacobs et al. (105) showed that a 3-month intensive meditation retreat increased telomerase activity in participants (n = 30) compared with control subjects (n = 30), an effect mediated by increased perceived control and decreased neuroticism. Daubenmier et al. (106) found that telomerase activity increased both in overweight women receiving a 4-month mindfulness-based intervention for stress eating (n = 47) and in wait-list control subjects (n = 47), with increases correlated with decreased chronic stress, anxiety, dietary restraint, dietary fat intake, cortisol, and glucose. Lin et al. (107) have summarized other recent work examining effects of lifestyle interventions on telomere length and general health status.

Summary and Implications

In the 4 years since Aubert and Landsorp (15) published their review, telomere research has exploded: they identified over 5000 articles on this topic indexed in PubMed, whereas a current search yields nearly 14,000 articles. Most studies addressing the relationship between telomere length, psychosocial stress, and psychiatric illness have been published during this brief period. At present, evidence is strongest in supporting an association of reduced telomere length with psychosocial stress and depression. Given the relationship between stress and depression, this is not surprising; it remains to be established exactly when, how, and why shorter telomeres are observed in these conditions.
The more recent demonstration that reduced telomere length is associated with early-life stress poses challenges and opportunities. Should the adverse health outcomes in adults after early adversity be conceptualized as accelerated aging, following Wolkowitz et al. (97)? Or can these findings be better accommodated by the dysregulated homeostasis/allostatic load model (108) that currently predominates? Alternatively, perhaps reduced telomere length is not even caused by early-life stress but is rather a preexisting (risk) or acquired (disease) marker for those individuals who subsequently characterize their early-life experiences as stressful. Nor has the possibility been excluded of a spurious association between early-life stress and reduced telomere length, accounted for by other adverse health and behavioral sequelae of childhood adversity.

The role of telomeres in understanding these findings must also be considered. Since telomerase maintains telomere length, it might be expected that decreased telomerase activity would result in telomere shortening, perhaps suggesting a more proximal effect of chronic stress on this enzyme rather than on the telomere itself. However, the studies reviewed above suggest inconsistent relationships between telomere length and telomerase activity, and some authorities suggest that telomerase activity might compensatorily increase in the face of stress and/or telomere shortening. These conceptual challenges, in conjunction with the greater technical difficulty associated with the telomerase assay, limit the current utility of telomerase activity for informing our understanding of stress and telomere length.

The early findings reviewed above raise hopes that telomere length might serve as a deep biomarker of early-life stress in terms of damage done, future vulnerability, and efficacy of therapeutic interventions. But a final caveat must acknowledge that, as in most rapidly emerging areas, publication bias in favor of positive findings could be a significant factor in overstating the robustness of this association. Much of the published literature is based on studies originally designed for other purposes, with telomere findings deriving from secondary analyses using banked blood specimens. Prospective research in this area over the next several years will clarify whether telomere assessment will merely constitute a new outcome measure or serve as the basis for a new paradigm.

The authors thank Yuliya Kuras for bibliographic assistance.

Drs. Price, Carpenter, and Tyrka report having received research funding from the National Institutes of Health, NeoSync, Neuronetics, Medtronic, and Cyberonics. Dr. Price also received research funding from Health Resources and Services Administration, served on advisory panels for Abbott and AstraZeneca, and served as a paid consultant to Gerson Lehrman, Wiley, Springer, Qatar National Research Fund, Alberta Heritage Foundation for Medical Research, Abbott, and AstraZeneca. Dr. Carpenter discloses consulting fees from Abbott, Cyberonics, Novartis, Wyeth, AstraZenica and Neuronetics; serving on the speakers’ bureau for Neuronetics; and receiving honoraria for continuing medical education from AstraZenica. Dr. Tyrka received honoraria for continuing medical education from Lundbeck and Takeda. Dr. Kao and Ms. Burgs report no biomedical financial interests or potential conflicts of interest.

