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Abstract: Autism Spectrum Disorder (ASD) is a complex condition with early childhood onset,
characterized by a set of common behavioral features. The etiology of ASD is not yet fully understood;
however, it reflects the interaction between genetics and environment. While genetics is now a
well-established risk factor, several data support a contribution of the environment as well. This paper
summarizes the conclusions of a consensus conference focused on the potential pathogenetic role
of environmental factors and on their interactions with genetics. Several environmental factors
have been discussed in terms of ASD risk, namely advanced parental age, assisted reproductive
technologies, nutritional factors, maternal infections and diseases, environmental chemicals and
toxicants, and medications, as well as some other conditions. The analysis focused on their specific
impact on three biologically relevant time windows for brain development: the periconception,
prenatal, and early postnatal periods. Possible protective factors that might prevent or modify an
ASD trajectory have been explored as well. Recommendations for clinicians to reduce ASD risk or its
severity have been proposed. Developments in molecular biology and big data approaches, which
are able to assess a large number of coexisting factors, are offering new opportunities to disentangle
the gene–environment interplay that can lead to the development of ASD.
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1. Introduction

Autism Spectrum Disorder (ASD) is a complex biological condition characterized by a common
set of behavioral features with early childhood onset, reflecting the interaction between different
genetic and environmental risk factors [1].

At present, there is no ultimate treatment for the core features of ASD. Nevertheless, autistic
symptoms can be reduced by early behavioral interventions [2,3], and some pharmacological therapies
are available for the treatment of psychiatric comorbidities [4].

ASD prevalence seems to be increasing: most recent estimates suggest a prevalence of 1 in 59
among 8-year-old children from the USA (https://www.cdc.gov/ncbddd/autism/data.html) [5].
Another study estimated a 3.5 prevalence increase between 2001 and 2011 in 2- to 17-year-old
children [6]. What caused this increased prevalence, beyond a broadening of ASD diagnostic criteria
and a better ascertainment of cases, is still unclear. Still, as ASD is the final consequence of cascade
events impacting brain development from gestation to early postnatal life [7], it is possible that a true
rise is related to these complex events.

While the etiology of ASD is not fully understood, genetics is a well-established risk factor [8].
Twin studies suggested a 76% concordance in monozygotic twins, confirming a strong genetic
hereditability for ASD, but also supporting an important contribution of environmental factors [9].

Genetic defects in more than 100 genes and loci, and hundreds of copy number variants (CNVs)
and single nucleotide (SNVs) polymorphisms (SNPs) have been implicated in about 20% of ASD
cases [10–13]. DNA microarrays enable the discovery of rare and recurrent CNVs as important
contributors to ASD and lead to gains in the understanding of autism genetics and to the identification
of individuals who might be genetically susceptible to autism. Hotspots of recurrent CNVs, including
16p11.2, 22q11.2, 1q21.1, 7q11.23, and 15q11–q13, have been shown to be strongly associated with
ASD [14]. Next-generation sequencing (NGS) methods revolutionized ASD gene discovery and have
also substantially contributed to functional genetic data, linking mutations frequently associated with
ASD with genes involved in the regulation of brain transcriptional networks during brain development
and early synaptogenesis, thus throwing some light on the understanding of the neurobiological
consequences of the disruption of these ASD-associated genes [12,15]. Nevertheless, also single-genes
syndromes have been associated with ASD, including Fragile-X (FMR1), Tuberous Sclerosis Complex
(TSC1-2) and PTEN syndrome [16,17].

Nonetheless, the heterogeneous clinical and biological phenotypes observed in ASD strongly
suggest that, in genetically susceptible individuals, environmental risk factors also combine or
synergize to generate a “threshold point” that might determine a dysfunction. While progress has been
made towards gaining an understanding of genetic and epigenetic factors, environmental risk factors
are less understood [18]. Actually, recent studies have demonstrated that during critical periods of
central nervous system development, early exposure to a variety of environmental factors, ranging
from microbes (bacteria and viruses) to medications, from chemicals to physical agents, can affect
neurobiological development, including effects relevant to ASD [19,20].

In October 2018, international ASD experts convened in Rome to discuss the potential pathogenetic
role of environmental factors, as well as their interactions with genetic susceptibility, focusing on three
biologically relevant windows for brain development: the periconception, prenatal and early postnatal
periods. From the epidemiological point of view, the identification of the exact timing of action of
each environmental factor, as well as its consequences in the neurodevelopmental pathways, remains
elusive. Nevertheless, it is now possible to establish some differentiations among risk factors that can
assist in developing detection and personalized follow-up of populations at higher risk for ASD.
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In this paper, we summarize the results of this consensus conference and put forward clinical
recommendations for clinicians to reduce ASD risk and/or its severity.

2. Conception Period

Advanced parental age: The association between older parental age at conception and
neuropsychiatric disorders in offspring is now well documented [21,22]. In the case of ASD, both
advanced maternal and paternal age at time of birth (≥35 years) were associated with an increased
risk of ASD [23–26]. Emerging evidence also confirms a combined parental age effect, which is highest
when both parents are in the older age range and increases with increasing differences in parental
ages [27]. Both human and animal model studies support the hypothesis of an association between
elevated rates of de novo mutations in older fathers and increased risk of ASD [28,29]. It has been also
suggested that maternal mechanisms mediating the effects of advanced maternal age on ASD risk are
associated not only with chromosomal or genetic modifications, but also with a higher prevalence
of chronic diseases and a less favorable uterine environment, often resulting in more obstetrical
complications, which might eventually lead to an increased risk of adverse birth outcomes [26].

Use of hormonal induction and/or assisted reproductive technologies: Assisted Reproductive
Technologies (ART) now account for 1–3% of all live births in the Western world (https://www.cdc.
gov/reproductivehealth/index.html) [30]. Several procedures that are used in the ART process, such
as hormonal stimulation, egg retrieval, in vitro fertilization (IVF), intra-cytoplasmic sperm injection
(ICSI), micro-manipulation of gametes and exposure to culture medium, could subject the gametes
and early embryos to environmental stress and may be associated with an increased risk of birth
defects and low birth weight (LBW) [31]. Children conceived using ART are also at a higher risk for
congenital anomalies including a two-fold increase in the central nervous system and epigenetic and
imprinted disorders [32–34]; there is some evidence that ART might have an impact on imprinting
through DNA methylation [35]. Actually, assisted conception and ASD share several risk factors.
In both cases, hormonal disturbances, especially in testosterone/androgen regulation, along with high
rates of advanced parental ages, preterm deliveries, and LBW, have been reported [6,24,36,37].

Additionally, a recent meta-analysis indicated that the use of ART may be associated with a
higher risk of ASD in the offspring [31]. In a previous case-control study conducted on a large Israeli
population [38], a higher ART prevalence (IVF and ICSI) (10.7%) even in young mothers (<29 years)
was reported among ASD children compared to the overall ART rate. In addition, the study ruled out
the hypothesis that ART was associated with unique autism symptomatology (i.e. autism severity
and adaptive functioning, a history of developmental regression) that may represent a distinct clinical
phenotype in this group. The study results indicated that although assisted conception may be a risk
factor for ASD, this group did not appear to represent a separate clinical phenotype within the autism
spectrum. These findings suggest that the increased recent prevalence of both ART and ASD might
be related.

Environmental chemical and toxicant factors: There is some evidence that exposure to
chemical pollutants at critical developmental stages may affect neural and behavioral development.
The pathogenetic mechanisms of environmental chemical factors can involve neurotoxicity but can
also extend to pathways of immune dysregulation, altered lipid metabolism, and mitochondrial
dysfunction. To date, the strongest evidence of association is shown by traffic-related air pollutants
and pesticides at different times of exposures [39,40].

Maternal nutritional status: Maternal nutritional status and body mass index before pregnancy
have been considered as environmental factors that can influence normal brain development through
excess or deficit of micronutrients and growth factors, which can affect neurodevelopmental outcomes
of offspring [41,42]. In this view, both maternal obesity and underweight have been associated with
an increased risk of ASD [42,43]. Maternal obesity results in activation of the maternal immune
system and in a chronic inflammation of the uterine environment potentiating abnormal neuronal
growth and differentiation in the fetus, with consequent neurodevelopmental impairments in the
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offspring [44]. At the same level, maternal undernutrition may elicit a physiological stress response
leading to neuronal damage through a disproportionate release of proinflammatory factors [45].

A large number of recent studies have suggested association between pre-conception intake of
folate and risk of ASD onset in newborns [46]. A significantly higher rate of ASD has been found in
children not exposed to folic acid (FA) compared to in children of mothers who took it. Conversely,
some apparently conflicting results were reported by other studies that related an increased risk
for ASD and neurocognitive impairments in children of mothers who used dietary supplements of
synthetic FA [47–49]. A possible explanation of these diverging results might be offered by the different
compositions between the FA used in supplements (pteroylmonoglutamic) and the one from natural
food sources (ormyl-tetrahydropteroylglutamates). High levels of pteroylmonoglutamic acid, which
depend on liver-based metabolism, could result in high levels of unmetabolized and non-useful FA in
the blood, which can cause changes in brain synaptic transmission and dysregulation of expression of
many genes associated with ASD [50–52].

Another important micronutrient potentially linked to the neurodevelopmental alterations in
ASD is iron. The importance of a correct intake of iron is evident already from the peri-conception
period [53]. In the brain, iron contributes to neurotransmitter production, myelination and immune
function. In this view, iron deficiency in this period could result not only in impairment in the general
development of cognitive, motor and language skills, but also in deficit in social orientation and
engagement that could lead to ASD [53].

Medications: A growing number of researches highlighted the potential association of
prenatal exposure to Selective Serotonin Reuptake Inhibitors (SSRIs) with the onset of ASD,
hypothesizing a pathogenetic link between alterations in serotonin pathways and ASD neurobiological
abnormalities [54–56]; exposure during the preconception period or the first trimester seems to
be associated with a higher risk compared to the other two trimesters [57]. Others have found
that antidepressants, regardless of their composition, might be associated with increased ASD
risk [58]. Thus, some diverging results have been found in relation to both antidepressant types and
dosages [58,59]. Furthermore, a Danish longitudinal study, with a follow-up of 5,057,282 person-years,
did not detect a significant association between maternal use of SSRIs during pregnancy and ASD
in the offspring [60]. Moreover, another large research did not find, after controlling for several
confounding factors, a significant association between prenatal exposure to antidepressant medication
and ASD [61]. Lastly, a “confounding by indication” cannot be excluded, raising the possibility that it
is depression and anxiety that might be risk factors for offspring ASD, rather than antidepressants
per se [58]. Nevertheless, even if evidence is still conflicting, the recommendation is to proceed to
apply the precautionary principle, balancing the use of antidepressants against the substantial adverse
consequences of untreated maternal depression.

3. Prenatal Period

Environmental chemicals and toxicants: In the last few years, epidemiologic investigations
indicated that prenatal exposure to chemical and toxic factors such as air pollution, pesticides,
materials used in the plastic industry and heavy metals may increase the risk of ASD [39,40,62–64].
Possible mechanisms behind the association between these environmental risk factors and ASD are
not only their interactions with genetic factors, and/or epigenetic marks leading to a diminished
ability to detoxify xenobiotics [65,66] but also their potential role in triggering neuro-inflammation
and oxidative stress that lead to neurobiological and neurotransmitter alterations and abnormalities in
signaling pathways [63].

Air pollution: Air pollution is probably the chemical risk factor with the strongest evidence of
association with ASD, especially for exposures in the third trimester [40,67,68]. Multiple variables,
such as metrics of exposure, type of pollution, time of exposure, could influence the risk of ASD
and its clinical outcome [69–71]. It should be noted, however, that despite positive associations that
were observed in many countries like the USA, Canada, Taiwan and Israel, European studies did
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not find any association [71–73]. Recently, in a Canadian population-based birth cohort, a significant
association between exposure to nitric oxide and ASD was found. No association was found between
ASD and particulate matter with a diameter of <2.5 µm or nitrogen dioxide [74]. These contradictory
results might be due to the fact that studies of air pollution have been often limited by indirect and
cross-sectional methods of exposure measurement, by different metrics of exposure, by different
evaluations of outcomes, and by focusing on different pollutants. Notwithstanding the need for further
investigation, and even if some unanswered questions remain, prenatal air pollution exposure has
emerged as a potentially modifiable risk factor for ASD.

Pesticides: Exposure to organochlorine pesticides (measured using geographical mapping)
increases the risk of offspring ASD [75,76]. Additionally, studies that examined risk of ASD in relation
to prenatal levels of poly-chlorinated biphenyls (PCBs) reported a suggestive association with specific
PCBs [20,77,78]. Organophosphate exposure during pregnancy increases the risk of autistic symptoms
in the offspring, at 2–3 years of age [79]. In particular, residential proximity to organophosphates
at some point during pregnancy is associated with a 60% increased risk for offspring to develop
ASD [80]. Conversely, a pilot case-control study investigating risk associated with exposure to organic
pollutants (including a variety of PCB congeners, DDT - dichloro-diphenyl-trichloroethane, and DDE -
Dichloro-2,2-bis(p-chlorophenyl)-ethylene) measured in archived maternal serum and diagnosis of
ASD in children did not find significant differences in odds ratios for ASD [77]. Most pesticides of
current use are neurotoxic, may target the developing brain [81] and are prone to cause oxidative
stress [82]. The widely used pyrethroids have been associated to ASD and neurodevelopmental
delay [83]. Nevertheless, for the same reasons described before, when talking about air pollution, an
association between pesticide exposure and ASD is not yet confirmed [78].

Phthalates: Phthalates are a class of chemicals used as plasticizers, solvents, and lubricants, and
as enteric coatings on pharmaceuticals and nutritional supplements. Few studies have addressed
the relationship between ASD and prenatal exposure to phthalates (3rd trimester) with contrasting
results [78].

Heavy metal exposure: Little evidence for an association between hair metal concentration of
mercury, copper, cadmium, selenium, chromium and autistic symptoms has emerged until now [84].
Moreover, as most of these studies only measured biomarkers and do not ascertain actual exposure
sources, temporality of association is unknown. Some studies examined exposure in relation to
maternal dental amalgam fillings and maternal or child consumption of seafood with inconsistent
findings [19]. A meta-analysis found not only consistent evidence for lack of association between
childhood thimerosal exposure and ASD, but also an increased risk of ASD following a higher level of
inorganic mercury exposure [85].

Medications: The association between ASD and prenatal exposure to drugs is increasingly
investigated; a specific area of interest was the study of antiepileptic and antidepressant agents [54].

Among antiepileptic drugs (AED), valproate showed the strongest association with
neurodevelopmental outcome, in terms of cognitive disabilities, developmental delay, and ASD [86].
It is therefore contraindicated as a first-line antiepileptic or mood stabilizer in pregnant women or
in those who plan pregnancy. Moreover, other AED, as oxcarbazepine and lamotrigine (alone or
combined with valproate), have been found to be associated with the onset of ASD in the offspring [87].
Findings across several meta-analyses examining the association between antidepressant exposure
during pregnancy and ASD are reasonably consistent showing an increased risk [88]. Additionally,
maternal psychiatric disorders could play a critical role in the development of ASD; thus, these have
been considered also as a potential confounding or addictive risk factor for exposure to antidepressants
alone [88–90].

Some studies suggested also a possible link between prenatal or early-life antibiotic use and
ASD [91], but too limited information is currently available to draw conclusions. Recently, however, it
has been demonstrated that low-dose antibiotic exposure in late pregnancy and early postnatal life in
mice induces impaired social behaviors and aggression in mice associated with changes in the intestinal
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microbiome [92]. On the other hand, supplementation with the probiotic Lactobacillus Rhamnosus
JB-1 might prevent the early-life antibiotic-induced aberrant behaviors. Taken together, these results
merit further research on the potential role of early-life antibiotic exposure in the development of ASD.

Substance abuse: A large number of studies examined prenatal exposure to substance abuse as
heavy tobacco smoke, alcohol, or cocaine and ASD. Association between high amounts of alcohol
consumption in pregnancy and ASD in offspring (especially those with Fetal Alcohol Syndrome) is
documented [93–95]. On the other hand, association between moderate alcohol intake in pregnancy
and ASD is unlikely [94].

An association between smoking during pregnancy and risk of childhood autism has been
suggested [96], but in this case, results are conflicting, with two meta-analyses in a total of 15 studies
reporting no association with overlapping odds ratios [97,98]. Therefore, at present, insufficient data
have been found to support an association.

Nutritional factors: Epidemiological studies and data obtained in humans have provided evidence
that mother’s diet during pregnancy plays a critical role in the development of the neural circuitry
that regulates behavior, thus determining persistent behavioral effects in the offspring [48]. Generally,
it is known that some elements of maternal diet during pregnancy, such as FA, vitamin D, iron and
fatty acids, are associated with higher or lower incidence of ASD or autistic traits in the offspring [99].
Specifically, low concentrations of vitamin D and FA are associated with an increased risk of ASD
diagnosis, in particular if these deficiencies are present in the mid-gestational period [100,101].
In addition, a maternal diet with high levels of methanol and aspartame during gestation could
be linked to an increased risk of ASD [102].

A poor omega-3 intake during gestation and maternal high-fat diet during pregnancy has
been associated with the risk of ASD and other neurodevelopmental disorders [19,103]. In fact,
high-fat consumption during pregnancy is strongly associated with activation of several of the
same inflammatory cytokines (e.g., interleukins IL-4, and IL-5) that are elevated during gestation
in mothers of children with ASD. Furthermore, high-fat diet consumption in pregnant women is
associated with modifications of the neural pathways involved in behavioral regulation, specifically
the serotoninergic system. The suppression of serotoninergic synthesis in the brain may underlie
the risk of developing later behavioral disorders, as long as the offspring is exposed to maternal
high-calorie diet during pregnancy.

Prenatal infections and maternal immune activation: Current data suggest that at least for a subset
of women, exposure to infections during pregnancy might increase ASD risk or other disorders of the
central nervous system (CNS) in the offspring. Activation of the maternal immune response can confer
a risk for the onset of psychiatric disorders. In particular, exposure to prenatal infections, such as flu,
rubella, measles, herpes simplex virus, and bacterial infections, may increase the risk for the offspring
of developing bipolar disorder and schizophrenia [104]. More recently, some population-based cohort
studies described a potential link between autism risk and maternal infection or inflammation during
pregnancy, depending on the time of gestational exposure, the type of infective agent, and the intensity
of the maternal immune response; specifically, viral infections seem to be associated to ASD risk in
the first trimester, bacterial infections in the second trimester, influenza and febrile episodes during
the whole pregnancy but especially in the third trimester [105,106]. Fewer studies have examined the
potential impact on ASD risk of fever as such, rather than in connection with infection broadly [106].
A retrospective case-control study based on maternal self-report showed an association between fever
during pregnancy and increased ASD risk [105]; it showed also that this risk was attenuated only in
mothers who took anti-pyretic medications to control their fever, but not in those mothers who did
not [105]. A prospective study in Norway also found an increased risk for ASD after prenatal fever
exposure, as well as evidence of a dose–response relationship, with risks rising parallel to multiple
episodes of maternal fever [107].

A prevailing concept is that maternal immune activation (MIA) may alter the expression of
inflammatory molecules in the developing fetus and that maternal-fetal immune dysregulation may
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disrupt brain development and neural connectivity, which in turn may have long-term effects on the
offspring’s mental functions [108]. Among the studies supporting a link between maternal infection
and increased risk of ASD, there are several ones carried out with the quantification of cytokine,
chemokines and of other inflammatory mediators measured in the maternal serum and amniotic
fluid [109]. These studies, however, have generated conflicting results [56,105]. Recently, increased
levels of maternal cytokines and chemokines during gestation have been associated with subsequent
ASD with intellectual disability [110].

Maternal immune systems can be involved in increasing ASD risk, even independently from
prenatal infections. In particular, maternal autoantibodies might recognize proteins in the developing
fetal brain [111]; these autoantibodies can be detected in ~20% of mothers of children at risk for
developing autism versus 1% of mothers of typically developing children, and defined an additional
sub-phenotype of ASD [112,113].

Individual maternal factors and diseases: Gestational diabetes has been considered a risk factor
because it negatively affects fetal growth and it increases the rate of pregnancy complications [114–116].
Moreover, it impacts long-term fine and gross motor development and leads to learning difficulties
and attention-deficit hyperactivity disorder [117]. These adverse effects of maternal diabetes on
brain development may arise from the increased fetal oxidative stress, as well as from epigenetic
changes in the expression of several genes [114,115,118]. However, the increased risk for ASD linked to
gestational diabetes may be related to pregnancy complications rather than to complications secondary
to hyperglycemia. Whether control of diabetes reduces ASD risk is still unknown [114,115].

Additionally, maternal melatonin levels have been investigated as potential culprits in the ASD
pathogenesis [119]. Melatonin is a crucial hormone for neurodevelopment and protects from oxidative
stress and neurotoxicant agents. Melatonin deficiency is frequently detected in ASD children already
in a very early period of life, and thus the potential implications of low maternal melatonin levels have
been considered as a factor that might increase the susceptibility to autism [120].

4. Perinatal/Early Postnatal Period

Current research seems to suggest that obstetric risk factors occur more often in ASD children
compared to neurotypical controls, even though these results have been challenged by other
authors [121]. In this view, the higher prevalence of obstetric negative events in ASD could be
explained, not only by the maternal genetic/epigenetic mechanisms mentioned above, but also by
hormonal factors altering the in utero environment, leading to a fertility decline and increasing
pregnancy and obstetric complications, which lead to emergencies, such as caesarean sections (CSs) or
preterm births [114].

Several studies have examined the possible relationship between CS and/or induced labor
and ASD, with conflicting findings [122,123]. One of the pathogenetic hypotheses is the possible
effect of oxytocin (OT) variations during CS in the etiology of ASD. Epigenetic dysregulations of the
oxytocinergic system could play a role in the behavioral dysfunctions of ASD. Perinatal alterations
of OT can also have life-long lasting effects on the development of social behaviors [124]. Within the
perinatal period, various processes, like planned caesarean section, labor induced by synthetic
OT or interrupted with oxytocinergic antagonists, can also alter the OT balance in the newborns,
even though the implications and medium/long-term effects of these manipulations are still largely
unknown [123,125].

Other studied perinatal factors include gestational age of <36 weeks, spontaneous, induced, or
no labor, breech presentation, as well as preeclampsia and fetal distress [24,26,126]. In preterm births,
chorioamnionitis, acute intrapartum haemorrhage, and LBW have been associated with higher risks of
abnormal results during early autistic screenings [127]. According to a study, parity of ≥4 might be a
protective factor that decreases ASD risk [126].

Microbiome: Scientific evidence is beginning to accumulate suggesting that, within ASD
populations, the gut microbiome shows a different composition compared to typically developing
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individuals (e.g., higher representation of Clostridia, Bacteroidetes, Desulfovibrio, and Sutterella spp),
which might be responsible for frequent gastrointestinal disorders experienced by patients with ASD.
Recent evidence in ASD subjects suggests that microbiota transplantation could represent a promising
approach to improving gastrointestinal and ASD symptoms [128]; data, corroborated also by ASD
animal models, showed the potential beneficial effects of probiotics treatment and fecal microbiota
transplantation [129]. However, further research is necessary in order to evaluate the effective
long-term improvements on the ASD clinical phenotype. Another way to target the microbiome
is dietary intervention with prebiotics, including fibers, such as galacto-oligosaccharides (GOS) that
induces the growth and activity of beneficial bacteria [130]. Recently, it has been suggested that the
combination of exclusion diets and GOS supplementation might result in significant improvements in
anti-social behavior in ASD [131].

While the fetal environment was initially thought to be entirely sterile, recent evidence suggests
that some bacteria are present in the amniotic fluid and placenta. One implication of these new
discoveries is that the microbial composition of the developing offspring may be sensitive to
environmental changes even during prenatal stages of life [132]. Animal models suggest that maternal
gut bacteria can promote neurodevelopmental abnormalities in offspring, possibly mediated by
T-helper-17 cells with subsequent immune system activation [133].

Table 1 provides a detailed summary of the main hypothesized environmental risk factors
implicated in ASD in relation to their most important period of exposure.

Table 1. Possible environmental risk factors for Autism Spectrum Disorder (ASD).

Risk Factor Hypothesized Period of Action Selected Studies

Advanced parental age Conception

Durkin et al., 2008 [23]; Ben
Itzchak et al., 2011 [24]; Geier et al.,
2016 [25]; Sandin et al., 2016 [27];

Modabbernia et al., 2017 [26]

Use of hormonal induction;
Assisted Reproductive

Technologies (ART)
Conception

Auyeung et al., 2009 [36]; Zachor
& Ben Itzchak., 2011 [38]; Liu et al.,

2017 [31]

Environmental chemicals and
toxicants:

air pollution
pesticides
phthalates

Conception, prenatal

Volk et al., 2011 [69]; Becerra et al.,
2013 [70]; Rossignol et al.,

2014 [40]; Weisskopf et al., 2015
[67]; Gong et al., 2017 [71];

Raz et al., 2018 [73];
Eskenazi et al., 2007 [79];

Cheslack-Postava, 2013 [77];
Shin et al., 2018 [134]; Braun et al.,

2014 [78]

Nutritional factors:
maternal obesity or undernutrition

folates
vitamin D deficiency

iron deficiency

Conception; prenatal; early
postnatal

Georgieff et al., 2007 [45];
Krakowiak et al., 2012 [41];

Getz et al., 2016 [42];
Andersen et al., 2018 [43];

Schmidt et al., 2011, 2012 and 2017
[46,135,136]; Vinkhuyzen et al.,

2017 [101]; Schmidt et al., 2014 [53]

Medications:
valproate

other AEDs
SSRIs

antibiotics
antibiotic

Prenatal

Roullet, et al., 2013 [86];
Veroniki et al., 2017 [87];

Mezzacappa et al., 2017 [57];
Atladottir, 2012 [91]
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Table 1. Cont.

Risk Factor Hypothesized Period of Action Selected Studies

Infections;
Fever;

Maternal Immune Activation
(MIA)

Prenatal

Zerbo et al., 2013 [105]; Jiang et al.,
2016 [137]; Brucato et al., 2017
[106]; Zerbo et al., 2013 [105];
Parker-Athill et al., 2010 [109];

Jones et al., 2017 [110]

Maternal individual factors and
diseases:

gestational diabetes;
maternal melatonin levels;

depression (?)

Prenatal
Gardener at al., 2009 [114];

Lyall et al., 2012 [115]; Jin et al.,
2018 [120]

Delivery method Perinatal
Dodds et al., 2011 [122];
Emberti Gialloreti et al.,

2014 [123]

Fetal distress Perinatal Modabbernia et al., 2017 [26];
Wang et al., 2017 [126]

5. Gene–Environment Interactions and Epigenetics

The pathogenetic role of environmental risk factors in ASD etiology must not be considered
as a separate element but rather like a complex network of factors that can epigenetically affect
genetic components. Furthermore, recently, there has been an emphasis in shifting from associative
observations to more mechanistic studies to establish cause–effect relationship linking environmental
factors to ASD pathogenesis [26].

For example, an association between ozone exposure and ASD risk has been demonstrated
only among individuals who have a high CNV burden [61]. Moreover, the impact of MIA on the
onset and severity of ASD seems to be significantly influenced by genetic susceptibility [137,138].
Some environmental factors such as certain toxins and vitamin D deficiency increase the risk of gene
mutation that, in turn, can lead to an increased risk of ASD [139]. Likewise, as an association between
maternal adiposity and variations in newborn blood DNA methylation has been confirmed, it could
lead to the modified expression of several important genes (such as apolipoprotein D) that are critical to
neurodevelopment in utero [135].

To explain the effects of gene–environment relations, many researches pointed their interest in
examining potential involvement of epigenetics in ASD etiology [140,141]. Epigenetic mechanisms are
biochemical modifications of DNA that affect gene expression without changing the DNA sequence;
these are influenced by exposure to environmental factors [20]. Epigenetic programming is dynamic
and responsive to different environmental exposures during development and includes several
interrelated processes, including chromatin remodeling, histone modifications, DNA methylation,
and expression of microRNAs (miRNAs). Epigenetic mechanisms play a critical role in normal brain
development, thus drawing a bridge between genetic predisposition and environmental factors. They
affect brain functions throughout the whole life, both at the individual and the transgenerational
levels [140]. Several studies examined also the putative effects of stressful experiences in utero, such
as prenatal infections, in epigenetic processes. In particular, animal models of MIA revealed that
prenatally infected offspring exhibited significant differences in the expression of miRNA, altered
histone modification, and changes in DNA methylation [132].

6. Protective Factors

As already outlined, our knowledge about possible genetic and environmental risk factors for
ASD is improving. However, the individual developmental trajectories and outcomes are not just the
result of the influence of risk factors, as the interaction between risk and protective factors has to be
considered as well. In the past, protective factors were thought to be just those characteristics inherent



J. Clin. Med. 2019, 8, 217 10 of 23

to the individual, such as a high intellectual quotient or better social skills. Now, there is an increasing
understanding that there is the need to look also at possible pre- and postnatal environmental factors.
However, despite the growing interest in the identification of environmental risk factors and their
potential prevention in order to decrease ASD risk, to date, little is known about protective factors for
ASD. Nevertheless, in the last few years, increasing efforts have been made to try to identify factors
that may improve long-term outcomes [142].

Some elements of the mother’s diet might play a protective role by countering some core autistic
symptoms. The main elements of the maternal diet that seem to play a protective role against ASD are
fatty acids, vitamin D (vit. D), and iron [99].

A mean daily FA intake of ≥600 µg in the periconception period and/or during the first month
of pregnancy, but only in cases of significant mother’s fatty acids deficiency, is associated with a 40%
decrease of ASD risk [100,143]. The association between fatty acids and reduced ASD risk is strongest
for mothers and children with MTHFR 677 C > T (cytosine > thymine) variant genotypes, which leads
to less efficient folate metabolism [143].

According to some studies, vitamin D supplements during pregnancy could reduce the risk of
developing ASD in the offspring [144].

Higher iron intake through the end of pregnancy and particularly during breast feeding was
associated with reduced ASD risk compared to lower intakes [53].

In addition, some meta-analyses provide evidence that breastfeeding (exclusively or accompanied
by additional supplements) may protect against ASD [145]. Breastfeeding may reflect the protective
effect of breast milk [145–147]; for example, breast milk contains bifidobacteria, lysozyme, lipoxins,
glutathione, and anti-inflammatory cytokines. Literature suggests that, relative to controls, children
with ASD have lower levels or bifidobacteria and lysozyme in the digestive tract and increased levels
of inflammatory cytokines in plasma. Therefore, a number of possible components of breast milk could
plausibly be connected to a decreased ASD risk.

Additionally, the interest in polyunsaturated fatty acids (PUFA) in maternal diet is increasing,
as lipid composition (lipidomics) seems crucial in psychiatric disorders [148]. The increase in PUFA,
especially omega-3 fatty acids, in a prenatal maternal diet was associated with a decreased ASD
risk [19].

Another factor that could play a role as a protective agent is melatonin. Melatonin synthesis
is frequently impaired in patients with ASD and in their mothers. Therefore, consumption of
this hormone during pregnancy could act as a neuroprotective factor, decreasing the risk of
neurodevelopmental disorders, including ASD [120].

Table 2 summarizes the main known protective factors for ASD, in relation to the suggested period
of exposure. These are likely protective factors that might prevent and/or modify a poor outcome
in a more positive one, thus enhancing the potential for a healthier life. For all these reasons, focus
on reinforcing protective factors should be increasingly considered a key element in the preventive
method as well as in the clinical approach to ASD.
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Table 2. Proposed protective factors for ASD.

Nutritional Protective Factors Period of Exposure Study

Folic acid of ≥600 µg
Folic acid + MTHFR 677 C > T

variant genotype

Prenatal
Prenatal

Schmidt et al., 2012 [143]; Schmidt et al., 2011
[149]; Suren et al., 2013 [100]

Fatty acid
PUFA Prenatal Lyall et al., 2013 [19]; Morgese et al., 2016 [148]

Vitamin D Prenatal Stubbs et al., 2016 [144]

Iron
Iron + Breastfeeding Prenatal; postnatal Schmidt et al., 2014 [53]

Melatonin Prenatal Jin et al., 2018 [120]

Breast feeding Postnatal Bar et al., 2016 [146]; Boucher et al., 2017 [147];
Tseng et al., 2017 [145]

7. Early Intervention Strategies

The preconception and prenatal periods are probably the stages, in which the risk and protective
factors play their major role. However, the well-known postnatal plasticity of the brain suggests
that, during the first month and/or year of life, there are additional prospects to mitigate the impact
of ASD on the quality of life of the affected person. In fact, developmental trajectories in children
with ASD are complex and highly variable, so one of the major challenges is identifying potential
protective factors and developing effective treatments. Single-gene syndromes with a high prevalence
of neurodevelopmental disorders such as TSC or PTEN syndrome provide a unique opportunity to
investigate risks and protective factors. Actually, the development of the phenotype does not stop
when the diagnosis is made; the several risk and protective factors persist in acting together across the
whole life, but particularly during the earliest stages. For this reason, early detection and subsequent
early intervention strategies might positively modify the evolving developmental trajectories.

Actually, beyond some general environmental aspects, which have been shown to be protective,
such as an inclusive educational environment or a positive parenting, in the last few years, a number
of peripheral markers have been identified in children affected by idiopathic autism, including
altered redox balance and mitochondrial dysfunction [150], decreased DHA and cholesterol with
impaired Na+/K+-ATPase activity in erythrocyte membranes [151,152], upregulation of inflammatory
cytokines and dysfunctional microbiota [153,154], and a characteristic metabolomic signature [136,155].
These altered parameters not only may provide tools for early diagnosis, but should be regarded as
hubs of a network of inter-related dysfunctions, which are the basis for the manifestation of autistic
clinical symptoms and its more common comorbidities. Providing remediation for such peripheral
dysfunctions, specifically in a very early period of life, may make a significant difference in lessening
the severity of symptoms, thus improving the quality of life. Ideally, one should monitor in high-risk
infants and in newly diagnosed toddlers and children, a number of biological parameters, including
nutritional deficiencies, oxidative stress, mitochondrial dysfunction, inflammation markers, intestinal
leakage markers, and lipid composition of membranes, and then provide appropriate nutraceutical
supplementations. Following a few months of treatment, the clinical outcome and the biological
parameters should be assessed, in order to evaluate the efficacy of treatment.

8. Clinical Recommendations

Table 3 summarizes the main clinical recommendations for each period of vulnerability. However,
as extensively discussed in the previous chapters, the impact in terms of ASD risk of several of these
factors is only partially clarified; thus, these clinical recommendations should be acknowledged
considering possible pitfalls related to still existing contradictory data interpretations. For this
reason, these recommendations should be pondered in the perspective of the precautionary principle.
Some general recommendations are, of course, related to antenatal care for each pregnancy, such as

Glorious
Evidenziato

Glorious
Evidenziato
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no smoking, no alcohol consumption, and prevention of folate acid and vitamin D deficiencies.
Nevertheless, pediatricians should pay attention also to environmental conditions, which are
recognized as risk factors for ASD. These include, but are not limited to, advanced parental age,
a sibling with ASD, prematurity, a history of ART, maternal diabetes, and maternal obesity, as well as
the use of antiepileptic or antidepressant drugs. In all these cases, close monitoring aiming to minimize
the effects of risk factors and to maximize the impact of protective factors is warranted.

Table 3. Clinical Recommendations for the periconception, prenatal and early postnatal periods.

Clinical
Recommendations

Minimizing Risk
Factors

Maximizing Protective
Factors References

Periconception Period

Encouraging women
weight loss in case of

obesity and strict
glycaemia control in case

of diabetes;
close monitoring and/or

treatment of
preconception maternal

diseases and/or
conditions (psychiatric

conditions, vitamin D or
folic acid deficiencies);

close follow-up of
children born after ART

use using frequent
developmental

surveillance after birth

Monitor diet of women;
encourage assumption of

daily folic acid and
vitamin D intake from
natural sources before

pregnancy; have
reasonable exposure to

sunlight.

Peretti et al., 2017 [99];
Schmidt et al., 2012 [143];
Andersen et al., 2018 [43];

Oberlander et al., 2017
[90]; Zachor & Ben
Itzchak, 2011 [38]

Prenatal Period

Close monitoring and
symptomatic treatment
even for mothers with

minor infections or
inflammatory episodes;
prevention of infections
during pregnancy with
vaccination programs;

surveillance of mothers
who are using long-term

medications.
Mothers who had

already autistic children
and/or with de novo or

inherited
ASD-associated CNVs
are more susceptible to

environmental insults in
the subsequent

pregnancy; therefore, a
strict surveillance and

treatment of infections or
inflammatory episodes

during whole pregnancy
is highly recommended.

Recommend daily folic
acid intake of ≥600 µg

during the first month of
pregnancy;

recommend a constant
intake of vitamin D and

iron

Babenko et al., 2015
[156]; Schmidt et al., 2014
[53]; Mezzacappa et al.,
2017 [57]; Veroniki et al.,

2017 [87]

Glorious
Evidenziato
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Table 3. Cont.

Clinical
Recommendations

Minimizing Risk
Factors

Maximizing Protective
Factors References

Perinatal/Early
Postnatal Period

Close monitoring not
only of premature

newborns, but also of
those with minor

perinatal complications;
defined medical and
neuropsychological

follow-up of preterm
children; ASD screening
in all preterm infants, as
recommended by AAP,
using instruments such

as M-CHAT
In case of syndromic

ASD: early and frequent
neurodevelopment

assessment to promptly
identify early signs

suggestive of ASD (i.e.
deficits in social
communication

behaviors in TSC, low
adaptive behaviors in

social area in FXS, lack of
language development
in Angelman syndrome,
and difficulties in joint

attention in preterm
infants)

In case of high risk for
epilepsy, EEG

monitoring and
immediate treatment of

seizures (to minimize the
impact on long-term

outcome)
In all high-risk infants,

(genetic syndromes,
preterm birth, and

familial history) parental
education to warrant

early referral and
parent-mediated

intervention

Whenever possible,
encourage breastfeeding;

monitor diet of infants
and toddlers;

early targeted behavioral
interventions to

potentiate cognitive
abilities, which can act as

protective factors
reducing the severity of

ASD symptoms

Curatolo et al., 2018
[157]; Peralta-Carcelen

et al., 2018 [158];
McDonald et al., 2017

[159]; Tseng et al., 2017
[145]; Peretti et al., 2017

[99]; Zwaigenbaum et al.,
2015 [160]; Bonati et al.,

2007 [161]; McCary et al.,
[162]; Jones et al.,

2017 [163]

As early as possible in
high-risk infants and in

newly diagnosed
toddlers/children

Following the evaluation
of biological parameters,

provide appropriate
nutraceutical

supplementations

Li et al., 2017 [164];
Adams et al., 2018 [165]

Of course, there are situations, like car exhaust-related or other sorts of air pollution, in which the
reduction of the impact of a risk factor is not prerogative of single individual’s choice; rather it is matter
of governments’ policies. Nevertheless, some simple strategies, namely ventilation improvements and
air cleansers, can be of assistance in reducing at least indoor pollution.
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Anyway, it should also be mentioned that several of these factors have been associated with other
neurodevelopmental or psychiatric disorders as well, for example with Attention Deficit Hyperactivity
Disorder (ADHD), conduct problems, or lower behavioral scores [166]. As a matter of fact, it is
now recognized that co-occurrence of neurodevelopmental disorders is more often the rule than
the exception. In this perspective, one should ask not just if an environmental factor increases the
risk for ASD, but also if it might impact individually just one of the different features of ASD, like
social-communication or repetitive behavior.

In short, the synergic effects of genetic, epigenetic and environmental factors can lead to a higher
susceptibility during the whole pregnancy, especially in a subset of mothers at high risk of having
a child with ASD. Although it is not possible, at present, to change the pathogenetic effects of the
majority of these factors, some modifiable environmental agents could be modulated in order to
restrain the severity of the disorder and, potentially, to prevent its onset.

Figure 1 summarizes the impact of selected environmental factors on ASD risk.
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lack of the specific factor. OR of “Autistic sibling” is around 7, so it is presented out of scale.

9. Future Perspectives

Future studies will need to take into account the complexity and heterogeneity of ASD, aiming
at detecting the interactions of the diverse and multiple risks and protective factors associated with
ASD. Thus, we should move from the research of a single risk factor to models which take into
account the dynamic relationship between genetics and environment. Large long-term genetically
informed prospective studies, including multi-generational ones, are needed to take into account new
genetic/epigenetic evidence, as well as data arising from cellular, computational, or animal models.
Large and heterogeneous sample sizes are needed to be able to identify timing of exposure in relation
to critical developmental periods in which the risk and protective factors are acting. Furthermore,
studies on environment toxics have been until now largely limited by a lack of reliable exposure
measurements. In addition, this aspect would benefit from prospective designs.



J. Clin. Med. 2019, 8, 217 15 of 23

In conclusion, recent developments in molecular biology and big data approaches, which are
able to assess a large number of coexisting factors, are offering new opportunities to disentangle the
gene–environment interplay that can lead to the development of ASD.
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