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Maternal immune activation and
neuroinflammation in human
neurodevelopmental disorders

Velda X. Harn

Neurodevelopmental disorders (NDDs) with onset in
early childhood, including autism spectrum disorder
(ASD), attention-deficit/hyperactivity disorder (ADHD)
and Tourette syndrome (TS), are increasing in preva-
lence and should be considered a health priority’. The
estimated prevalence of ASD in the USA was 1 in 10,000
in the 1970s, 1 in 150 in 2000 and 1 in 54 in 2016 (REF?),
and NDDs combined currently affect 1 in 6 children in
the US population’. NDDs are more commonly diag-
nosed in males than in females and often coexist with
overlapping symptoms, including repetitive patterns of
behaviour and deficits in social cognition, sensorimotor
control and executive function’. ASD has been described
as the human disorder with the highest economic impact
on society, yet aetiology-specific treatments are lacking’.

The genetic contribution to NDD risk has been
demonstrated in twin, familial and genome-wide asso-
ciation studies’. However, the genomic risk of NDDs
is mostly attributed to vulnerability alleles with low
penetrance, and highly penetrant monogenic aetiol-
ogies account for a small minority of cases’. Evidence
is accumulating of shared genetic aetiologies in NDDs,
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Abstract | Maternal health during pregnancy plays a major role in shaping health and disease

risks in the offspring. The maternal immune activation hypothesis proposes that inflammatory
perturbations in utero can affect fetal neurodevelopment, and evidence from human
epidemiological studies supports an association between maternal inflammation during
pregnancy and offspring neurodevelopmental disorders (NDDs). Diverse maternal inflammatory
factors, including obesity, asthma, autoimmune disease, infection and psychosocial stress, are
associated with an increased risk of NDDs in the offspring. In addition to inflammation, epigenetic
factors are increasingly recognized to operate at the gene—environment interface during NDD
pathogenesis. For example, integrated brain transcriptome and epigenetic analyses of individuals
with NDDs demonstrate convergent dysregulated immune pathways. In this Review, we focus

on the emerging human evidence for an association between maternalimmune activation and
childhood NDDs, including autism spectrum disorder, attention-deficit/hyperactivity disorder
and Tourette syndrome. We refer to established pathophysiological concepts in animal models,
including immune signalling across the placenta, epigenetic ‘priming’ of offspring microglia

and postnatal immune-brain crosstalk. The increasing incidence of NDDs has created an urgent
need to mitigate the risk and severity of these conditions through both preventive strategies in
pregnancy and novel postnatal therapies targeting disease mechanisms.

with factors such as gene-environment interactions
and the sex of the offspring influencing the phenotypic
expression of disease®’. The increasing prevalence of
NDDs probably reflects changing diagnostic practices
and alterations in environmental influences rather than
an increase in de novo DNA variants'. Over the past
century, the prevalence of infectious diseases, such as
tuberculosis, has decreased, whereas the prevalence of
inflammatory disorders, such as autoimmune disease,
asthma and allergies, has increased®. The same period
has seen rapid urbanization and alterations in diet, along
with increasing obesity’. As we discuss in this Review,
maternal exposure to these factors could be linked to an
increased risk of NDDs in the offspring.

The role of inflammation and epigenetic factors at the
gene-environment interface during NDD pathogenesis
is increasingly recognized'*-"". Environmental factors,
including diet, exercise, sleep, socioeconomic status,
stress, exposure to pollutants and the gut microbiome,
collectively termed the exposome, have been proposed
to alter the transcription of susceptibility genes and to
modulate the expression of NDDs'"""". When individuals

www.nature.com/nrneurol



Key points

* Human studies are uncovering a role for maternal immune activation (MIA) in the
pathogenesis of common neurodevelopmental disorders, such as autism spectrum
disorder, attention-deficit/hyperactivity disorder and Tourette syndrome, in the
offspring.

* Prenatal, in utero and postnatal embedding of environmental factors in the
epigenetic architecture of both the brain and the peripheral immune system can
modulate individual susceptibility to neurodevelopmental disorders.

* The effects of MIA, mediated by acute and chronic inflammation in pregnancy, are
transduced to the fetus through inflammatory cell signalling pathways and epigenetic
mechanisms.

* Pathogen-associated molecular patterns, damage-associated molecular patterns and
Toll-like receptors represent a convergent cellular pathway between heterogeneous
environmental factors and innate immune activation.

* In conjunction with individual genetic risk, sex-related factors and second ‘immune’
hits during life, MIA-induced aberrant immune programming results in a loss of
immune homeostasis, which is associated with behavioural abnormalities in animal
models.

are faced with environmental threats, the activation of
an inflammatory response provides protection from
pathogens and promotes tissue recovery to maintain
cellular homeostasis'®. However, excessive or dysregu-
lated inflammation can cause pathological imprinting of
the immune system, resulting in susceptibility to chronic
diseases”. Inflammation plays a prominent role in sig-
nalling at the cellular-environmental interface and the
resulting cellular responses are regulated through finely
tuned epigenetic mechanisms™ (BOX 1). Environmental
factors throughout life can cause specific, long-lasting
‘biological embedding’ of external exposures into the
epigenetic architecture of the individual**.

During pregnancy, environmental insults experi-
enced by the mother are hypothesized to programme
the immune and developmental epigenetic code of the
offspring, thereby influencing vulnerability to NDDs
later in life*** (FIG. 1). The maternal immune activa-
tion (MIA) hypothesis proposes that exposure to a
dysregulated maternal immune milieu in utero affects
fetal neurodevelopment™*°, The gestation period is a
time of particular vulnerability as key brain processes
and networks are rapidly established in the developing
fetus® (FIC. 1). ‘Critical periods of neurodevelopment are
directed by the genetic code and shaped through inter-
actions with the development of the immune system,
gut microbiome, stress axis and sexual characteristics
in the fetus*>* (FIC. 1). Perturbations to the developing
brain during these critical periods can interfere with the
typical developmental trajectory, resulting in enduring
effects on the individual™®,
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Several previous reviews have provided in-depth
discussions of MIA in animal models®~**; however, a
complementary review on the emerging human data
has been lacking until now. In this Review, we focus on
evidence that maternal inflammation in pregnancy has a
deleterious effect on fetal neurodevelopment in humans.
In animal models, the transfer of maternal inflamma-
tion to the offspring during pregnancy can be readily
observed through the examination of maternal blood,
placenta and offspring brain. However, access to such
tissues is more limited in humans and the evidence has
been acquired through multiple methodologies, includ-
ing epidemiological studies. Therefore, although we
focus on emerging human evidence of MIA as a risk
factor for NDDs, we also refer to immune and epige-
netic mechanisms that have been demonstrated in ani-
mal models. Finally, we discuss potential therapeutic
opportunities to target abnormal immune or epigenetic
processes.

Epidemiological evidence of MIA in humans
Clinical observations of elevated rates of ASD and schiz-
ophrenia in the offspring of pregnancies that coincided
with seasonal outbreaks and epidemics of rubella, influ-
enza, measles, mumps and polio highlighted a possible
link between gestational infections and neurodevelop-
mental outcomes’. Subsequently, a wide range of mater-
nal infections, including viral, bacterial and protozoan
infections, were found to increase the risk of neurolog-
ical and neuropsychiatric disorders in the offspring*’.
Although some agents, such as TORCH (toxoplasmosis,
other agents, rubella, cytomegalovirus and herpes sim-
plex) and Zika virus, can directly infect the fetus through
vertical transmission, other non-transmissible mater-
nal infections occurring during pregnancy have been
shown to increase the risk of NDDs in the offspring.
A meta-analysis of 15 studies found that common mater-
nal bacterial infections during pregnancy, including
genitourinary and skin infections, increased the odds of
offspring ASD by 13%%. Maternal genitourinary infec-
tions increased the odds of offspring ADHD by 26-33%
and mothers with viral respiratory infections during
pregnancy had a threefold increased risk of having a
child with ADHD***. The association between hetero-
geneous prenatal infections and a spectrum of NDDs
suggested common immune mechanistic pathways.
Beyond infections, evidence is increasing that diverse
chronic inflammatory conditions during pregnancy are
notable risk factors for offspring NDDs**" (FIG. 2). Acute
infections can provoke high-grade acute inflammatory
responses, and other environmental, psychosocial and
biological factors might prevent the resolution of acute
inflammation and promote a state of low-grade sterile
systemic chronic inflammation®'. Maternal autoimmune
disease during pregnancy is an independent risk factor
for ASD, ADHD and TS*-*, and maternal asthma was
associated with offspring ASD and ADHD in several
population-based studies’*. Maternal obesity has a
dose-dependent relationship with offspring ASD and
ADHD!, In addition, mothers with low socioec-
onomic status are twice as likely to have a child with
ADHD or TS than are mothers with middle or high
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Box 1| Overview of epigenetics

Epigenetics is defined as “the study of changes in gene function that are heritable

and do not entail a change in DNA sequence™. Epigenetic modifications comprise
chemical or physical changes to chromatin —a DNA-protein complex in which DNA is
wrapped around histone proteins to form nucleosomes, which are further compressed
into chromosomes.

The four main epigenetic modifying factors are DNA methylation, histone
modifications, chromatin modelling and microRNA. DNA methylation involves
the covalent transfer of a methyl group to the cytosine ring of DNA by DNA
methyltransferases. DNA methylation in promoter regions known as CpG sites
represses gene transcription, whereas DNA methylation in the gene body promotes
transcription®. Histone modifications on specific residues control the relaxation or
tightening of the chromatin structure, thereby regulating DNA accessibility to
transcription factors®. Many different types of histone modification have been
observed but histone acetylation and methylation are the most studied™. Histone
acetylation results in increased gene transcription, whereas histone deacetylation is
associated with transcriptional inhibition™. Histone methylation increases or represses
gene transcription depending on the specific amino acids in the histone that are
methylated and the degree of methylation””. MicroRNAs, which are short non-coding
nucleic acids, bind to mRNA and regulate gene expression by blocking translation or
inducing degradation of the target mMRNA**. These epigenetic factors are further divided
into writers, readers and erasers depending on the specific chemical modification that
they catalyse as well as on their roles in interpreting the modifications.

Epigenetic mechanisms play crucial roles in normal brain development and are highly
sensitive to environmental factors such as inflammatory responses'**. Dynamic changes
to the epigenetic pattern in response to environmental stimuli during development
calibrate and refine cell differentiation, maturation and homeostasis'**.

socioeconomic status™. Other heterogeneous mater-
nal inflammatory states, including gestational diabetes,
pre-eclampsia, depression and exposure to smoking or
other air pollutants, are also associated with an increased
risk of offspring NDDs*,

The timing of maternal exposure influences the
development of offspring NDDs. For example, maternal
asthma in the first and second trimesters was found to
be associated with childhood ASD*, whereas maternal
bacterial infections and negative life events in the third
trimester increased the odds of ASD and ADHD in the
offspring™.

Overall, data linkage studies provide convincing
evidence that individual and cumulative maternal
pro-inflammatory states confer risk of a range of offspring
NDDs"-* FIC. 2). However, each pro-inflammatory state
could have numerous mechanisms of action. Autoimmune
disease and asthma are clearly immunological, whereas
obesity and stress, although pro-inflammatory, might
also affect neurodevelopment through metabolic stress,
oxidative stress and neuroendocrine mechanisms.

Maternal inflammatory response during
pregnancy

Evidence from MIA animal models. Studies in animal
models have established that the maternal immune
response is sufficient to cause NDDs independently
of the inciting pathogen or risk factor® (FIG. 1). In early
rodent models of maternal influenza infection during
pregnancy, the offspring showed aberrant brain mor-
phology mediated by altered gene regulation as well as
behavioural and cognitive deficits consistent with ASD*.
These findings prompted the use of immunostimulants,
including viral mimic polyinosinic:polycytidylic acid
(poly(I:C)) and bacterial mimic lipopolysaccharide
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(LPS), to study the effects of maternal and fetal cytokine
immune responses on offspring brain development™**.
These MIA animal models showed changes in offspring
brain and immune function in association with behav-
ioural problems consistent with NDDs**, Subsequently,
other immunostimulants, including cytokines, and
maternal exposure to non-infectious environmental fac-
tors, such as a high-fat diet, stress, pollution and asthma,
were found to produce similar histological, transcrip-
tional and behavioural manifestations in the offspring
brain to those seen in classic poly(I:C) and LPS MIA
models**'. These preclinical findings were consistent
with human epidemiological data.

Experiments in multi-exposure animal models
revealed that a combination of environmental fac-
tors could have synergistic or multiplicative effects
on offspring neurobehavioural outcomes® . The ini-
tial studies indicated that earlier MIA, more intense
immunogenic stimuli and elevated maternal immune
responses resulted in worse offspring neurobehavioural
outcomes™'. Subsequent studies demonstrated that off-
spring displayed different — but not necessarily more
severe — behavioural outcomes depending on the tim-
ing, intensity and specificity of the immune insult as well
as on the degree of maternal immune response™*.

Inflammatory factors converge on common immune
pathways. Animal studies have established that Toll-
like receptors (TLRs), triggered by pathogen-associated
molecular patterns (PAMPs) and damage-associated
molecular patterns (DAMPs), are a potential conver-
gent molecular pathway linking heterogeneous maternal
inflammatory factors and immune-mediated disrup-
tion of offspring brain development (FIC. 3). PAMPs and
DAMPs, which are the first signals induced by exoge-
nous and endogenous threats, respectively, are detected
by TLRs, which activate the innate immune system to
produce pro-inflammatory cytokines®” (FIG. 2). TLRs
are pattern recognition receptors expressed on periph-
eral immune cells and CNS cells, including microglia
and neurons®. Classic animal models of MIA use the
PAMPs poly(I:C) and LPS, which stimulate TLR3 and
TLR4, respectively, to trigger a maternal inflammatory
response’’. DAMPs, such as self RNA, self DNA, high
mobility group protein B1 (HMGB1) and heat shock
proteins (HSPs), are normal cell constituents that are
released from endogenous damaged cells”*. Diverse
factors from the exposome as well as disease states,
including obesity, pre-eclampsia, depression and asthma,
result in an increased cellular release of DAMPs™ 7.

In humans, chronic inflammatory conditions, such as
diabetes, pre-eclampsia and depression, lead to elevation
of HMGBI levels, which stimulates TLR4 (REFS**%7%). In
autoimmune diseases, such as psoriasis and systemic
lupus erythematosus (SLE), inappropriate accumulation
of self RNA and self DNA causes activation of intracellular
TLRs™.

The available evidence indicates that a range of envi-
ronmental factors and disease states that can complicate
pregnancy converge on TLR pathways, with potential
downstream effects on adaptive immunity in the mater-
nal blood, placenta and fetal brain. Evidence of TLR
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Fig. 1 | Maternal immune activation and offspring development.
Evidence from human and animal studies indicates that maternal immune
activation programmes the fetal brain and immune system through
inflammatory and epigenetic mechanisms during key periods of CNS,
microglial and immune system development, and colonization of gut
microbiota. Heterogeneous infectious and non-infectious maternal
inflammatory factors induce the release of pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns (DAMPs),
which activate Toll-like receptors on maternal peripheral innate immune
cells and placental cells, leading to cytokine production®**"°, Across the
placenta, passive transport and active placental production of immune
mediators occur and interact with transplacental metabolic,
neuroendocrine and stress (hypothalamic—pituitary-adrenal (HPA))

NATURE REVIEWS | NEUROLOGY

signalling pathways'"". The effects of maternal inflammation are proposed
to induce long-lasting epigenetic memory on fetal microglia and immune
cells during critical developmental periods®*'**, The lower part of the
figure shows the timings of key developmental processes in the offspring
brain, immune system and gut microbiome. Postnatally, dynamic
peripheral-central immune crosstalk occurs, involving peripheral
inflammatory signals triggered by environmental immune-modifying
factors and brain immune cells'*. Interactions among offspring aberrant
immune programming, genetic risk, sex and second immune ‘hits’ in life
result in a state of chronic inflammation in both the brain and periphery,
which manifest as lifelong neurobehavioural abnormalities® >’
Adapted from REF.'®, CC BY 4.0 (https://creativecommons.org/licenses/
by/4.0/).
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activation during human pregnancy is emerging but is
still limited. In pregnant women with diabetes mellitus
or SLE, elevations in TLR4 expression, phosphorylation
of proteins downstream of TLR4 and cytokine levels in
Human umbilical vein endothelial cells isolated from
infants born to mothers with inactive SLE showed a
pro-inflammatory profile, including elevated HSP and
TLR9 levels™.

Transduction of MIA to the offspring

Role of cytokines and other immune molecules. Immune
mechanisms that are proposed to transmit the effects of
MIA to the developing fetus include dysregulated mater-
nal innate, adaptive and complement pathways, and
maternal autoantibodies™. In animal models, cytokines
have been shown to play crucial roles in mediating the
effects of MIA on the developing fetus”"®. The mother

produces pro-inflammatory cytokines (‘sensors’) in
response to environmental insults, with accompanying
increases in pro-inflammatory cytokines in the placenta,
amniotic fluid and fetal brain (‘transducers’), resulting in
altered fetal behavioural outcomes (‘effectors’)” (FIG. 1).
Animal studies have delineated key roles for IL-6, IL-17,
tumour necrosis factor (TNF) and IL-1p in mediating the
effects of MIA to the fetus'®””"**, Cytokines expressed
in the fetal brain play multiple roles in immunity and
are important for normal brain development®. MIA
disrupts the precise balance between pro-inflammatory
and anti-inflammatory cytokines in the fetal brain, with
long-lasting effects on neurodevelopmental processes®
(FIC. 1). Cytokines are expressed in synapses in conjunc-
tion with complement, chemokines and major histo-
compatibility complex proteins®’. Changes in cytokine
expression can disrupt synaptic function, thereby
perturbing the refinement of neural connectivity™.

Risk factor Author (year) Developmental Effect estimate (95% CI)
disorder
Chen et al. (2016) ASD OR 1.34 (1.23-1.46) e
Autoimmune Nielsen et al. (2021) ADHD OR 1.20 (1.04-1.38) m
disease ;
Dalsgaard et al. (2015)* TS IRR 1.22 (1.01-1.48) @
Mataix-Cols et al. (2018)* TS OR 1.40 (1.30-1.51) : @
Gong et al. (2019)* ASD OR 1.43 (1.38-1.49) ..
Hisle-Gorman et al. (2018)” ASD OR 1.49 (1.29-1.74) w - e
Asthma |
Liu et al. (2019)" ADHD OR 1.41 (1.36-1.46) .
Instanes et al. (2017)* ADHD OR 1.50 (1.50-1.50) @
Lei et al. (2019)® ASD OR 1.41 (1.19-1.67) e
Obesity :
Jenabi et al. (2019)*® ADHD OR 1.42 (1.23-1.61) L e
He et al. (2018) ASD e il o o |
Low:medium PR 0.70 :
Durkin et al. (2010)** ASD _ [ I
Low SES (0.64-0.76) !
Russell et al. (2016)% ADHD OR 2.21 (1.33-3.56) o @ |
Miller et al. (2014)>* TS OR 2.78 (1.42-5.43) } 1 @ |
| I I \
0 2 4 6
OR/HR/IRR

Fig. 2 | Maternal chronic inflammation and offspring neuro-
developmental disorders. Forest plot of selected human data linkage
studies demonstrating that maternal immune activation secondary to acute
and chronic inflammation in pregnancy is associated with
neurodevelopmental disorders (NDDs) in the offspring. The plot shows the
associations of non-infectious maternal inflammatory risk factors, including
autoimmune disease, asthma, obesity and low socioeconomic status (SES),
with offspring autism spectrum disorder (ASD), attention-deficit/
hyperactivity disorder (ADHD) and Tourette syndrome (TS). On the basis of
a previously published search strategy and forest plots®, four maternal risk
factors were selected as prototypical immunological and pro-inflammatory
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factors to illustrate associations with offspring NDDs. The largest meta-
analysis with the most participants, along with several population-based
studies, were chosen as representative studies and included in the forest
plot. Most of the studies showed a positive association hetween maternal
inflammatory risk factors and NDDs in children, although conflicting results
were obtained for the link between low SES and ASD*/-#9»255.206-211
Differences in ASD case ascertainment in studies, owing to differences in
health-care access in various countries, were thought to explain these
divergent results. Cl, confidence interval; HR, hazard ratio; IRR, incidence
risk ratio; OR, odds ratio; PR, prevalence ratio. Adapted from REF.*,
CCBY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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Consistent with the preclinical findings, human
cohort studies have demonstrated that alterations in the
levels of inflammatory biomarkers such as cytokines,
chemokines and C-reactive protein (CRP) in maternal
or offspring tissue are associated with offspring ASD and
ADHD™%°2 TABLE 1). IL-6 stimulates CRPgene expres-
sion, which is a well-established non-specific marker of
inflammation. Socioeconomic adversity is associated
with reduced maternal serum IL-8 levels in the second
and third trimesters and, in turn, with altered child neu-
rodevelopment, including deficits in self-regulation™*.
Further studies showed a link between increased mater-
nal serum IL-6 levels during pregnancy and offspring
neuroanatomical changes, including alterations in amyg-
dala and brain connectivity, which are commonly seen
in children with NDDs™,

The general trends indicate an association between
biomarkers of maternal inflammation and offspring NDD.
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Fig. 3 | Cell signalling pathways linking diverse
environmental factors to inflammation and epigenetic
programming of DNA. Inflammation is increasingly recog-
nized at the gene—environment interface'. Microbial
pathogens release pathogen-associated molecular
patterns’'**, Heterogeneous environmental factors

and disease states implicated in chronic inflammation,
including obesity, diabetes, pre-eclampsia, asthma, auto-
immune disease, smoking, pollution, low socioeconomic
status, stress and depression, stimulate the release of
damage-associated molecular patterns'*, Pathogen-
associated molecular patterns and damage-associated
molecular patterns trigger cell-surface and intracellular
Toll-like receptors (TLRs) to activate an inflammatory
cascade involving phosphorylated adaptor proteins

such as NF-kB, MAPK and activator protein (AP1)*,
Translocation of NF-kB and AP1 to the nucleus activates
the transcription of genes encoding pro-inflammatory
cytokines and other immune mediators™. The activation
of cytokine receptors through the JAK-STAT pathway

by cytokines also contributes to NF-kB signalling. NF-xB
and JAK-STAT signalling upregulates and interacts

with epigenetic enzymes and transcription factors to
induce epigenetic modifications'*. Epigenetic modifying
factors include DNA methylation, histone modifications,
chromatin modelling and microRNA. DNA methylation
activity is catalysed by DNA methyltransferases

(DNMTs) and ten-eleven translocation (TET) proteins.
Histone acetylation is requlated by histone acetyltrans-
ferase (HAT) and histone deacetylase (HDAC), and histone
methylation is controlled by histone methyltransferase
(HMT) and histone demethylase (HDM)*". Environmental
and biological factors drive epigenetic alterations, which
modify the cellular expression of immune as well as
developmental genes'*. Ac, acetylation; dsRNA, double-
stranded RNA; HMGB1, high mobility group protein B1;
HSP, heat shock protein; LPS, lipopolysaccharide;

Me, methylation; poly(l:C), polyinosinic:polycytidylic acid;
ssRNA, single-stranded RNA.

However, the findings are not consistent or comparable
across studies, partly owing to methodological differ-
ences (TABLE 1). In some instances, conflicting associa-
tions were found. For example, an increased incidence
of ASD diagnosis was associated with elevated neona-
tal IL-4 levels in one study® but with reduced levels
in another”. Pooled analyses of multicentre studies
with similar methodologies are needed to verify these
associations. Postnatal evidence of elevated cytokine
expression in the CNS has also been found in individu-
als with NDDs™. Specific cytokines, including IL-6, TNF
and IFNy, are frequently upregulated in the brain and
cerebrospinal fluid of individuals with ASD*.
Transplacental transfer of maternal pathogenic anti-
bodies targeting fetal brain antigens, known as anti-brain
antibodies, might explain the effects of MIA in a sub-
set of offspring with NDDs""* (FIC. 1), Maternal IgG
begins to cross the placenta during the second trimester
of pregnancy and can penetrate the fetal brain paren-
chyma owing to the immaturity of the fetal blood-brain
barrier”. Up to 10% of mothers of children with ASD
harbour anti-brain antibodies, compared with 2.6% of
mothers of typically developing children®. Specific anti-
bodies identified in the mothers of children with ASD
include contactin-associated protein-like 2 (CASPR2)
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Table 1| Inflammatory mediators and neurodevelopmental outcomes in humans

Reference

Study design Sample size

Timing

Cytokines measured

Maternal in utero blood cytokine and CRP levels and ASD in offspring

Goines et al.
(2011)*

Jones et al.
(2017)*

Nadeem
et al.(2020)"™

Population-
based
case—control

Population-

based nested

case—control

Meta-analysis

of three
population-

based nested

case—control
studies

84 M, sp,
49 My, and
159 controls

415M,, (184

Masp.p and
201 MASDrnolD)’
188 M, and
428 controls

Total
participants:
5,258

Mid-gestation

Mid-gestation

First and
second
trimesters,
before

18 weeks’
gestation or
15-19 weeks’
gestation

Eotaxin, GM-CSF, IFNy, IL-10,
IL-12, IL-1p, IL-2, IL-4, IL-5,
IL-6, IL-8, CXCL10, CCL3,
CCL4, RANTES and TNF

GM-CSF, IFNy, IL-1a, IL-1,
IL-2,1L-4, IL-6, IL-7, IL-8, IL-10,
IL-12p40, IL-12p70, IL-13,
IL-17,CXCL10, CCL2,CCL3,
CCL4, TNF, eotaxin, slL-2Ra
and IL-1RA

CRP

Maternal in utero blood cytokine and CRP levels and ADHD in offspring

Graham et al.
(2018)™

Gustafsson
etal. (2020)*

Thirmann
etal. (2019)*

Chudal et al.
(2020)""

Prospective

Prospective

Prospective

Population-
based
case—control

86 pregnant
women

62 pregnant
women

293 pregnant
women

1,079 M
and 1,079
controls

Early, mid
and late
pregnancy

Third

trimester

Third

trimester

First and
second
trimesters

IL-6

IL-6, TNF and CCL2

IL-4,IL-5, IL-6, IL-8, IL-10,
IL-12,1L-13, CCL2, TNF
and IFNy

CRP

Amniotic fluid cytokine and chemokine levels and ASD in offspring

Abdallah
etal. (2012)"

Abdallah
etal.(2013)"

Population-
based

case—control

Population-
based

case—control

414 M, ., and
820 controls

331M,,and
698 controls

Amniotic fluid

Amniotic fluid

CCL2,CCL3 and RANTES

IFNy, IL-1p, IL-2, IL-4, IL-5,
IL-6, IL-8, IL-10, IL-12, IL-17,
IL-18, TNF, TNF(, TREM1,
slL.-6Ra and GM-CSF

Neonatal blood cytokine and chemokine levels and ASD in offspring

Krakowiak
etal. (2017)™

Abdallah
etal. (2012)"

Population-
based
case—control

Population-
based
case—control

214 ASD, 27
DD and 62
controls

359 ASD and
741 controls
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Neonatal
blood spot

Neonatal
dried blood
sample

IL-1B, IL-2, IL-4, IL-5, IL-6,
IL-10, IL-12, IL-13, IFNy, TNF,
IL-8,CCL2,CCL3,CCL4,
eotaxin, CXCL10 and RANTES

IFNy, IL-1p, IL-2, IL-4, IL-5,
IL-6, IL-8, IL-10, IL-12, IL-17,
IL-18, TNF, TNFB, TREM1,
sIL-6Ra and GM-CSF

Outcome measures

ASD or developmental
delay diagnosis via
DSM-IV criteria

ASD or developmental
delay diagnosis via
DSM-IV criteria

ASD diagnosis via
ICD-10 criteria, DSM-IV
criteria or SRS and PDP
scale at 6 years of age

Neonatal structural and
functional brain MRI,
impulse control task

at 2 years of age

Various assessments
between 48 and

72 months of age:
K-SADS-EC, SDQ,
ADHD-RS and SWAN

SDQ at 8 years of age

ADHD diagnosis via
ICD-10 criteria

ASD diagnosis via ICD-8
and ICD-10

ASD diagnosis via ICD-8
and ICD-10

ASD diagnosis via
ADI-R, ADOS and
DSM-5 at 2-5 years
of age

ASD diagnosis via ICD-8
and ICD-10

Results

Increased maternal
IL-4, IL-5 and IFNy levels
associated with 50%
increased risk of ASD,
with or without 1D, in
offspring

Increased maternal
GM-CSF, IFNy, IL-1a and
IL-6 levels associated
with ASD+ID in
offspring; reduced
maternal IL-1p and
CCL2 levels associated
with ASD-nolD in
offspring

M, have an adjusted
odds ratio of 1.02 (95%
C10.948-1.103) of
having an elevated CRP
level during pregnancy
compared with controls

Increased maternal IL-6
levels associated with
lower impulse controlin
offspring at 24 months
of age, attributed

to enlarged right
amygdala in newborn

Increased levels of
maternal IL-6, TNF and
CCL2 in combination
associated with ADHD
in offspring at 4-6 years
of age

Increased maternal IL-13
levels associated with
offspring hyperactive—
inattentive behaviour
at8years of age

No association between
CRP levels in early
pregnancy and ADHD
in offspring

Increased amniotic fluid
CCL2 levels associated
with ASD in offspring

Increased amniotic
fluid IL-4, 1L-10, TNF and
TNFp levels associated
with ASD in offspring

Increased neonatal
IL-1p and IL-4 levels
associated with ASD

Reduced neonatal [FNy,
IL-4 and IL-10 levels
associated with ASD
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Table 1 (cont.) | Inflammatory mediators and neurodevelopmental outcomes in humans

Reference

Study design Sample size

Timing Cytokines measured

Neonatal blood cytokine and chemokine levels and ASD in offspring (cont.)

Heuer et al.
(2019)*

Zerboetal.
(2014)™

Abdallah
etal.(2013)*

Outcome measures Results

Population- ~ 370ASD, 140  Neonatal IFNy, IL-1B, IL-2, IL-4, IL-5, ASD diagnosis via Increased neonatal
based DD and 378 dried blood IL-6, IL-8, IL-13, TNF,IL-12p70, DSM-IV criteria IL-6 and IL-8 levels
case—control  controls sample MIF, CX3CL1, CXCL1,CXCL2, associated with ASD

CXCL3 CXCL5, CXCLS6,

CXCL9,CXCL10,CXCL11,

CCL12,CXCL13, CXCL16,

CCL1,CCL2,CCL7,CCLs,

CCL11,CCL13,CCL15,

CCL17,CCL19,CCL20,

CCL21,CCL22,CCL23,

CCL24,CCL25,CCL26,

CCL27 and GM-CSF
Population 84 ASD, 49 Neonatal IFNy, IL-2, IL-4, IL-5, IL-6, ASD diagnosis via Increased CCL2 and
based DDand159  dried blood IL-1B, IL-8, IL-10, IL-12p40, DSM-IV criteria reduced RANTES
case—control  controls sample TNF, GM-CSF, CXCL10, levels in neonates later

CCL2,CCL3,CCL4, RANTES diagnosed with ASD

and eotaxin
Population 359 ASDand  Neonatal CCL2,CCL3 and RANTES ASD diagnosisviaICD-8 No difference in
based 741 controls  dried blood and ICD-10 chemokine levels
case—control sample between ASD

and controls

Studies that examined developmental outcomes, such as memory, executive function and cognition, are not included. ADHD, attention-deficit/hyperactivity
disorder; ADHD-RS, ADHD Rating Scale; ADI-R, Autism Diagnostic Interview — Revised; ADOS, Autism Diagnostic Observation Schedule; ASD, autism
spectrum disorder; CRP, C-reactive protein; DD, developmental delay; DSM, Diagnostic and Statistical Manual of Mental Disorders; ICD, International Statistical
Classification of Diseases and Related Health Problems; ID, intellectual disability; K-SADS-EC, Kiddie Schedule for Affective Disorders and Schizophrenia for Early

Childhood; M

ADHD*

mothers of children with ADHD: M

mothers of children with ASD: M

ASD* ASD+ID*

mothers of children with ASD and ID; M

asoneipe Mothers of children

with ASD but not ID; M, mothers of children with DD; PDP, pervasive developmental problems; SDQ, Strengths and Difficulties Questionnaire; SRS, Social
Responsiveness Scale; SWAN, Strengths and Weaknesses of ADHD Symptoms and Normal Behaviour Scale; TNF, tumour necrosis factor.

and M-methyl-p-aspartate receptor (NMDAR) antibod-
ies and thyroid autoantibodies'". Behavioural changes
were elicited when NMDAR and CASPR2 antibod-
ies derived from mothers of children with ASD were
transferred to murine models, supporting a putative

7,98

pathogenic role for these antibodies™”’

The role of the placenta in MIA. The placenta plays a
pivotal role in maintaining immune homeostasis across
the maternal-fetal interface. However, the active placen-
tal inflammatory response to maternal environmental
factors is proposed to contribute to offspring develop-
mental abnormalities'”" (FIG. 2). Studies in animal mod-
els have demonstrated that maternal inflammation is
transduced to the fetus via direct and indirect mecha-
nisms at the placenta, involving immune, metabolic
and endocrine factors, stress (leading to hypothalamic-
pituitary-adrenal (HPA) axis activation) and reactive
oxygen species'”"'""* [FIC. 1). Immune signals can be trans-
mitted through passive transfer of maternal cytokines
to the fetal brain or through placental inflammatory
responses, which trigger endogenous fetal cytokine
production'’'~'", Maternal stress and obesity stimulate
maternal and placental cytokine production and also
increase glucocorticoid levels, alter nutrient availability
and disrupt leptin and insulin signalling'""'*. In addi-
tion, an MIA-induced placental inflammatory response
can cause placental insufficiency and result in fetal
hypoxaemia'”.

In humans, pro-inflammatory maternal factors,
including maternal obesity, depression, socioeconomic
adversity and smoking, induce placental inflammatory
histological changes and pro-inflammatory cytokine
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production'®'". Obese mothers showed a 3-9-fold
increase in 7ZR4mRNA expression in placental immune
and non-immune cells, correlating with placental IL-6
expression'”'"”, In a prospective study of 2,926 pregnant
women, maternal anxiety was associated with elevated
placental CRP mRNA expression and parental reports
of hyperactivity symptoms in male offspring'". The
direct impact of placental inflammation on offspring
neurodevelopmental outcomes is difficult to isolate and
measure in humans because it is likely to be multifac-
torial, including the consequences of prematurity and
low birthweight as well as the involvement of placental
ischaemia, vascular dysfunction and oxidative stress'"'.

Effects of MIA on the offspring

Behaviour, brain function and immune system. The
behavioural phenotypes of the offspring in MIA animal
models can resemble the core features of ASD and, to
a lesser extent, ADHD and T§, including memory and
other cognitive impairments, anxiety, depression-like
behaviour, sensorimotor deficits, social deficits and
repetitive behaviour*, Animal models show that MIA
affects offspring brain structure, neuronal morphol-
ogy and function, and synaptic and neuronal connec-
tivity and causes dysregulation of neurotransmitter
systems”>'2. Immune changes in the offspring include
long-lasting alterations in the activation states and
cytokine expression of central and peripheral immune
cells™ " (FIG. 1).

Microglia are the resident immune cells of the brain
and are emerging as key players in MIA as they are a
primary source of cytokine and immune molecules
in the brain'"“. Microglia participate in complex brain
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developmental processes both prenatally and postna-
tally, including neurogenesis, synaptic pruning and
organization of functional neural circuits''*'"*, Together
with various immune proteins, microglia are involved
in engulfing excess synaptic structures — also known as
synaptic pruning — to develop functionally mature syn-
apses and sculpt neuronal circuits''®'"", In animal studies,
MIA has been shown to disrupt microglial development
and impair the microglia-dependent phagocytic actions
involved in synaptic pruning''®'"”. Despite methodolog-
ical differences and inconsistences of findings, animal
studies have generally indicated a link between maternal
inflammation and increased microglial density and/or
activation in the offspring brain™. An activated micro-
glial cell adopts a pro-inflammatory state with increased
cytokine production in response to cell injury and death
in its vicinity (FIC. 1).

Evidence is emerging for the presence of microglial
activation in humans with NDDs. In PET studies using
radiotracers that bind to activated microglia, such as
translocator protein (TSPO), adults with ASD and chil-
dren with ADHD or TS showed excessive region-specific
microglial activation compared with controls'*'*',
However, the single finding of altered TSPO binding or
expression in patients should be interpreted with cau-
tion as TSPO binding can be affected by other patho-
physiological processes and is not specific to microglial
activation'*.

Although microglia have been the main focus of
MIA studies, other cells, particularly astrocytes, are
increasingly recognized to play immunological roles'*.
In addition, maternal inflammation and epigenetic mod-
ifications induced by environmental factors and disease
states are likely to affect not only microglia but also other
glial cells and neurons.

Epigenetics in the immune system and brain. Preliminary
evidence from animal studies indicates that MIA expo-
sure can induce long-lasting DNA methylation altera-
tions, histone modifications and changes in microRNA
expression in the offspring brain'*-'"* (BOX 1; FIG. 1).
Methylation and histone modifications detected in the
cortex of offspring born to MIA-challenged pregnant
mice correlated with alterations in the expression of
genes involved in neuronal development, synaptic trans-
mission and immune signalling*'*. MIA disrupts the
epigenetic regulation of microglia in the offspring'”. In
addition, MIA causes methylation changes in genomic
regions that encode proteins involved in epigenetic mod-
ulation (methyl CpG binding protein 2 (MECP2)) or in
neurotransmitter signalling (including GABAergic and
dopaminergic pathways)'*>'*%'%,

In animal models, epigenetic mechanisms have
been proposed to mediate differences in behavioural
manifestations in offspring exposed to time-specific
immune insults*. In addition, longitudinal studies in
animal models of MIA have demonstrated dynamic
variations in DNA methylation and histone pattern-
ing in the offspring brain across the lifespan®"'**, These
findings indicate that MIA continues to have effects on
the offspring’s epigenetic code postnatally by interfering
with the epigenetic machinery*. Other factors, including
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a maternal high-fat diet and gestational diabetes, also
affect epigenetic programming of brain and peripheral
immunity in the offspring, leading to a series of met-
abolic and immunogenic changes that can affect brain
function®"'*'. Animal models have also demonstrated
transgenerational effects of prenatal environmental
adversities, with second-generation and third-generation
offspring exhibiting epigenetic alterations in the brain in
association with behavioural abnormalities™"*"!1%,

Emerging preclinical research is exploring the link
between inflammation and epigenetic alterations.
Cytokines can activate epigenetic enzymes or recruit
chromatin regulators to the DNA'* (FIG. 2). For example,
IL-6 can activate DNA methyltransferase 1 and IL-17A
inhibits histone deacetylase activity'*’. In addition, the
stimulation of cellular stress through innate immune
pathways can induce the expression of epigenetic
mediators, such as the histone demethylase Jumonji
domain-containing protein D3, resulting in altered
immune and neurodevelopmental gene expression'*.
Maternal inflammation during pregnancy can also alter
the epigenetic code of the offspring via other modifi-
ers such as oxidative stress, availability of maternal
folic acid (a major dietary source of methyl groups)
and short-chain fatty acids induced by changes in the
offspring’s gut microbiome'*'",

In humans, maternal factors that have been impli-
cated in MIA, including anxiety, depression and
exposure to smoking, are associated with epigenetic
modifications in the placenta, offspring umbilical cord
blood, peripheral blood and buccal cells'*'**. However,
only a handful of studies have attempted to link spe-
cific maternal gestational risk factors with epigenetic
changes across the maternal—fetal interface and to cor-
relate these changes with subsequent offspring neu-
rodevelopmental deficits'*"**, The studies to date have
mainly adopted a targeted approach to examine genes
that are involved in the HPA axis or directly influence
brain function (for example, neurotransmitters or
neurotrophins)'**. Mothers with prenatal depression,
anxiety or socioeconomic adversity were found to have
placental DNA methylation changes in NR3C/ (encod-
ing glucocorticoid receptor) and 45077582 (encoding
11B-hydroxysteroid dehydrogenase type 2), which were
predictive of poor neurodevelopmental outcomes in
the offspring'®"". Increased methylation of #SD7152
results in transcriptional silencing of the gene, causing
decreased placental cortisol inactivation and allowing
increased cortical exposure in the developing fetus,
which is detrimental to brain development'*. Maternal
prenatal anxiety and depression also showed associa-
tions with umbilical cord blood methylation changes
in NR3CI and SLC6A (the serotonin transporter
gene) as well as buccal DNA methylation changes in
BDNF, the gene encoding brain-derived neurotrophic
factor'*-1*!.

Human studies also showed that maternal inflam-
matory risk factors, including obesity, gestational dia-
betes, depression and asthma, were associated with
umbilical cord blood epigenetic changes in immune
pathways in addition to metabolic and oxidative stress
pathways'*"**, Intriguingly, long-lasting epigenetic
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changes in immune pathways, resulting in altered gene
expression and increased cytokine responses, were iden-
tified in adolescents born to mothers exposed to natural
disasters during pregnancy”. However, these studies did
not specifically examine the long-term neurodevelop-
mental outcomes in the children.

Other studies have attempted to elucidate whether
epigenetic modifications in umbilical cord blood sam-
ples are predictive of poor neurodevelopmental out-
comes in the offspring. Epigenetic methylation changes
in the AES7 gene, which encodes a transcription factor
involved in neuronal differentiation, in umbilical cord
blood samples were found to be associated with cognitive
and behavioural outcomes later in childhood'*.

Collectively, these studies suggest that prenatal
exposure to inflammatory factors is associated with an
altered epigenetic signature in the offspring, which is
long-lasting and has the potential to cause both immune
and neurobehavioural deficits during childhood. How-
ever, proving that a specific prenatal environmental
exposure in the mother causes an epigenetically medi-
ated neurodevelopmental disorder in the offspring is
extremely challenging in humans. To address this issue,
prospective longitudinal studies, including exploration
of the link between the maternal exposome and immune
mediator expression as well as sequential epigenetic
evaluation of tissues across the mother—fetus interface,
will be required. However, the ability to perform such
studies is substantially limited by the challenge of sam-
pling various tissues and the requirement for long-term
follow-up. In addition, the origins of epigenetic changes
in older children — for example, paternal, maternal,
pregnancy-related or postnatal factors secondary
to ongoing environmental exposures — are difficult to
determine (FIG. 1).

Evidence of neuroinflammation in people with NDDs.
The most robust evidence of a role for inflammation
and epigenetics in NDDs has come from human brain
epigenetic studies integrated with transcriptomics.
Over the past decade, post mortem brain studies in
individuals with NDDs who died from other causes
have revealed region-specific microglial activation
and neuroinflammation, with associated epigenetic
changes'"'*~'*’, In individuals with ASD or TS, brain
transcriptome analysis showed upregulation of genes
involved in microglia-related and astrocyte-related
inflammation'"". In terms of brain epigenetic changes,
individuals with ASD and neurotypical controls showed
differences in DNA methylation and histone acetyla-
tion involving immune-related, synaptic and neuronal
genes' """, Integrated omics analysis of brain tissue
from people with ASD brain uncovered dysregulated
histone acetylation associated with downregulation of
neuronal gene expression and hypomethylation asso-
ciated with upregulation of glial-immune genes'’. The
upregulation of immune-related genes was suggested to
be secondary to environmental factors or compensatory
in nature''.

As the brain analyses were performed in adults with
NDDs, it was not possible to determine whether the
inflammation was primary and causal or secondary and
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reactive. Despite clear evidence of neuroinflammation in
humans with NDDs, no studies have yet demonstrated
a direct link between MIA and neuroinflammation in
newborn infants. Given the invasive nature of neonatal
brain biopsies needed to prove this association, surrogate
cerebrospinal fluid or PET biomarkers will be needed to
provide the necessary evidence.

Factors promoting risk and resilience to MIA
Maternal factors. Owing to the poor reproducibility
and heterogeneity of phenotypic outcomes in offspring,
researchers are turning their attention to elucidating the
factors that promote neurodevelopmental resilience and
susceptibility to MIA®*'"*, Even in animal MIA models
with the same genetic background and controlled envi-
ronmental factors, subgroups of offspring displayed dis-
parate brain network, transcriptional, behavioural and
immunological profiles'*. In animals, the response to
immune challenge in the pregnant mother is influenced
by maternal age and social isolation and confers sus-
ceptibility to MIA-induced molecular and behavioural
abnormalities in the offspring™*. Other susceptibility
factors to MIA in animals include maternal hypoferrae-
mia and anaemia as well as maternal gut microbiome
alterations that can induce intestinal T helper 17 cells to
produce IL-17A%"'>°, On exposure to a high-fat diet, the
maternal gut microbiome produces pro-inflammatory
bacterial metabolites that can activate maternal innate
immune cells*. Alterations in the maternal microbiome
during pregnancy owing to infection, antibiotic use,
altered diet and/or stress, influence neurogenesis and
modulate the gut microbiome and peripheral immune
system in the offspring***-'**. Changes in the offspring
gut microbiota can result in the increased production of
short-chain fatty acids, which modulates the microbiota—
gut-brain axis through neural, hormonal and epigenetic
pathways'”",

Factors that promote resilience to MIA in animal
models include high maternal iron, zinc, vitamin D,
omega-3 fatty acid and choline levels'****, In animal
studies, the inflammatory and anti-inflammatory effects
of maternal diet and macronutrient and micronutrient
intake have substantial effects on maternal inflam-
matory status, with consequences for offspring brain
development'*.

Postnatal factors. In most human pregnancies, the
offspring tend to be resilient to the effects of maternal
infection during pregnancy. There is increasing evi-
dence that complex gene-exposome interactions before
and after birth are involved in the modulation of NDD
expression®®'”, Studies in animal models indicate that
MIA can act as a disease primer and the offspring’s
genetic make-up, sex and environmental exposures after
birth can act as second and third hits, thereby altering
the manifestation of NDDs'®-'* (FIG. 1). A single severe
immune insult during a critically sensitive developmen-
tal period might cause severe neurological impairment
in the offspring. However, a less potent immune stimu-
lus may only cause ‘sub-threshold MIA” and prime the
immune memory of microglia and peripheral immune
cells to a maladaptive state, resulting in dysregulated
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inflammatory responses to subsequent immune
hits''*'*%1%7 (BOX 2).

In animal studies, postnatal immunogenic
‘second-hit’ events, such as infection and stress, com-
municate with brain immune cells via central-peripheral
immune crosstalk and trigger microglia to adopt an
activated state with heightened pro-inflammatory
responses'®"'*»1%17 (BOX 2], Over time, chronic immune
activation promotes chronic inflammation in the brain,
leading to behavioural deficits. Hypothetically, these
postnatal environmental factors also have the potential
to disrupt the individual’s epigenetic signature, thereby
increasing vulnerability to NDDs'**, Examples in
humans include the biological imprinting of childhood
trauma and adversity onto the individual’s epigenetic
landscape, which accentuates vulnerability to mental
health, immune and metabolic disorders later in life'”,
Similar epigenetic mechanisms might be operating in
the context of other postnatal ‘second-hit’ events.

The current literature exploring two-hit models
in humans is limited. MIA is challenging to ascertain in
humans owing to substantial heterogeneity in environ-
mental exposures and a lack of large-scale longitudinal
studies. However, psychosocial stress and infections are
commonly observed to be associated with the onset or
exacerbation of neurobehavioural symptoms in children
with NDDs™. These findings might reflect a second-hit
phenomenon or postnatal susceptibility to neuro-
developmental problems related to early-life exposure
to inflammation. In children with TS, psychosocial stress
increases the severity of tics and obsessive—compulsive
and depressive symptoms, and additive interactions
between psychosocial stress and group A streptococcal
(GAS) infections predict future tic severity'”. Children
who required hospitalization for infection or were
exposed to antibiotics in early childhood had an
increased risk of ADHD'"'"*, Further population stud-
ies showed that diverse infections, including GAS infec-
tion, non-streptococcal throat infection and enterovirus

Box 2 | Microglial development and programming

Microglia are permanent resident macrophages of the brain that originate from the yolk
sac during a remarkably restricted embryonic period and are only occasionally replaced
from the peripheral haemopoietic cell pool during the life of the individual'**"**. The
longevity of microglia is attributable to their extremely slow turnover (with a median
annual rate of renewal of 28%)*"*. Human microglia have a median lifespan of 4.2 years,
with some living and remaining functionally active for up to 20 years**“, Early-life

in utero immune perturbations influence microglial function in a region-specific and
sex-specific manner, depending on the timing, dose, type of stimulus and individual

genetic make-up”***'*,

The long-lived nature of microglia might explain how early-life aberrant programming
of the microglia, also known as microglial priming, can have long-term adverse effects
on brain development as observed in animal studies'*'"***, After the initial exposure to
an inflammatory stimulus, specific histone marks deposited at genomic regions related
to inflammatory pathways maintain microglial priming and long-lasting memory**.

On subsequent immune challenge, prompt transcriptional changes occur, resulting in
abnormal activation of inflammatory pathways in the microglia and leading to loss of
immune homeostasis’*’. Thus, early-life immune challenges are hypothesized to leave
specific long-lasting epigenetic marks on the offspring brain, which drive microglial
plasticity through immune training and memory' . This process leads to maladaptive
activated or primed microglial states with increased reactivity towards stressors in

the future”'*.
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infection, were associated with an increased risk of tic
disorder'”"'"*'"", Compared with controls, patients with
TS showed elevated GAS and Chlamydia trachomatis
antibody responses, suggesting a role for dysregulated
immune-inflammatory responses towards common
pathogens in tic disorders'™'"*. However, whether these
infections are specific activators of the immune system or
reflect more global immune dysregulation is unknown.

Other evidence for peripheral immune dysregulation
in children with NDDs includes altered cytokine expres-
sion, immunoglobulin levels and immune cell composi-
tion as well as abnormal innate or adaptive cell responses
to stimuli®"'""'"%, Furthermore, observational studies
show a high prevalence of gut inflammation, atopic dis-
eases and autoimmunity in children with NDDs'7* 1!,
Thus, there is strong evidence for chronic immune dys-
regulation in the peripheral blood and brains of indi-
viduals with NDDs. The biological effects of postnatal
second hits on offspring NDDs in relation to MIA and
the critical periods of susceptibility to these hits require
further investigation.

Sex differences in response fo MIA. NDDs are two to
four times more frequently diagnosed in males than in
females; however, the reasons are unclear'*>. The male
predominance does not seem to be directly attributa-
ble to genetic factors, as sex-skewed expression of neu-
rodevelopmental risk genes has not been found'*. Some
studies argue that current gender-biased standardized
instruments in humans result in underdiagnosis in
females'®. In addition, males with ASD tend to display
more externalizing behaviour (for example, repetitive
and restricted behaviour), whereas females are more
likely to present with more internalizing behaviour (for
example, emotional symptoms), which might affect the
diagnostic approach'®.

Another hypothesis is that males have inherent vul-
nerabilities to genetic mutations and/or environmental
insults'*. Animal studies have demonstrated differential
sex-specific vulnerability to a range of different antena-
tal inflammatory insults'"*. Sex differences in placental
responses to MIA, in fetal brain structure and function,
and in the characteristics of immune cells might account
for these differences''*. Findings in animals that the
innate immune system is involved in directing brain
masculinization led to the hypothesis that the male
brain has a more inflammatory environment than the
female brain during development, resulting in male
vulnerability to MIA™,

Research in humans has suggested that the brains of
people with ASD show sexual dimorphism of neuron-
glial interactions'”. Transcriptomic analysis of post-
mortem brain samples revealed that genes naturally
expressed at higher levels in healthy males than in
healthy females overlapped with genes that were upregu-
lated in brain samples from individuals with ASD'®.
A substantial proportion of the upregulated genes
encoded astrocytic or microglial markers'®. Longitud-
inal brain transcriptome analyses will be required to
establish whether sexually dimorphic pathways in
microglia underlie differential vulnerabilities to MIA
and the development of NDDs.
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Box 3 | Central-peripheral immune crosstalk

Bidirectional communication between peripheral immune cells and the CNS is essential
for brain homeostasis in development and disease. Findings from animal models
indicate that immune-brain interactions occur via several pathways. When the CNS

is threatened by pathogens and other danger signals, peripheral macrophages

and microglia are alerted and initiate an immune response, recruiting both central and
peripheral immune cells. Danger signals can communicate directly with microglia via
circumventricular organs, which are devoid of a blood-brain barrier (BBB)'**'*.
However, other components of the peripheral immune system, including lymphocytes,
cytokines and chemokines, can enter the CNS through the BBB and other entry points
under highly specific conditions. Furthermore, microglia can impair BBB function,
allowing more direct infiltration of peripheral activated immune cells’**. Peripheral
pro-inflammatory cytokine signals can also be relayed to the brain via the afferent
vagal nerve, which triggers innate brain cells to produce endogenous cytokines'”’,

In addition, peripheral monocytes can be trafficked into the brain via a rolling action
along brain endothelial cells, even in the presence of an intact BBB'*. Through these
interactions, the microglia undergo changes in pathways associated with inflammation,
phagocytosis and oxidative stress, leading to an activated, pro-inflammatory state**”.
Importantly, the pathways and mechanisms described above have not yet been
demonstrated in humans.

Future perspectives

Implications for dlinical assessment. Although the capac-
ity for sophisticated omics analysis across different tis-
sues and disorders has increased exponentially in recent
years, the bedside clinical assessment of children with
NDDs has not yet evolved to include detailed maternal
environmental exposures during pregnancy. Questions
regarding the family history of neurodevelopmental
and neuropsychiatric disorders are commonly asked to
determine ‘genetic’ risk. However, comprehensive assess-
ment of individual or cumulative maternal environ-
mental factors that might contribute to inflammation in
pregnancy, including diet, sleep, exercise, exposure to
pollution and smoking, and other immunological condi-
tions such as infection, autoimmune disease and atopies,
is also essential to uncover the synergistic or additive
effects of MIA in humans. In addition, assessment of
the child’s postnatal exposome, including stress (for
example, bereavement or trauma) as well as immuno-
logical factors (for example, infections or stressors) and
comorbidities, should be evaluated, along with a his-
tory of recurrent infections, autoimmunity and the gut
microbiome. Large birth cohort studies, such as Growing
Up in Singapore Towards healthy Outcomes (GUSTO)
and the Western Australian Pregnancy Cohort (Raine)
study, have incorporated comprehensive environmental
histories and omics analyses and could serve as valuable
sources to influence clinical practice*""'.

Future research priorities. One of the main limitations
of research into NDDs in humans is the inability to exam-
ine brain samples and, therefore, the focus has been on
peripheral blood. A large body of evidence has been
obtained for peripheral immune dysregulation in
patients with NDDs®*"'""'75, However, immune and epi-
genetic changes detected peripherally do not necessarily
reflect changes in the brain'"®. A transcriptomic meta-
analysis of 11 different tissues from patients with ASD
showed that genes related to inflammation and immu-
nity were upregulated in the brain but downregulated in
the blood"*. This finding raised the question of whether
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suppression of the immune transcriptome — that is,
immune deficiency — in the blood is the primary prob-
lem or whether it represents a compensatory response to
brain inflammation'"*. In addition, conflicting data have
been obtained on innate immune responses in cohorts of
individuals with NDDs. For example, TLR stimulation
responses on monocytes were elevated in children with
ASD or obsessive-compulsive disorder but suppressed
in adults with TS5,

The use of systems biology involving omics technology
and human neural progenitor cell models, such as orga-
noids, is expected to revolutionize our ability to dissect
mechanistic pathways in the brain and blood""*. In addi-
tion, the use of drug and biomarker discovery approaches,
such as brain transcriptomic reactome pathway-driven
drug discovery and drug repurposing resources, has
the potential to expedite the development of precision

2195

medicine to target neuroinflammation in NDDs'*".

Potential treatments. On the basis of our current know-
ledge of maternal-offspring neuroimmune dysfunction
from MIA, animal studies have focused on therapeutic
agents that target key immune, epigenetic or gut-brain
pathways. Animal models have been used to test dietary
interventions, including oral probiotics, vitamin D, zinc
and omega-3 polyunsaturated fatty acid supplemen-
tation, which have shown some success in reducing
the maternal inflammatory response and improving
offspring behaviour'"". The nanoparticle-assisted deliv-
ery of dietary supplements to increase the bioavail-
ability of nutrients is a promising approach to modulate
neuroinflammatory pathways'"'*,

In terms of postnatal interventions into immune and
epigenetic pathways, animal models have demonstrated
benefits from polyunsaturated fatty acid supplemen-
tation, manipulation of the gut microbiome, antipu-
rinergic therapy, antipsychotic drugs and minocycline
— an antibiotic that inhibits microglial activation'”~""".
In humans, postnatal immunomodulatory interven-
tions that have been trialled in NDDs, including anti-
biotics (macrolides and cephalosporin), intravenous
immunoglobulin, minocycline and faecal microbiota
transplantation, have yielded mixed results'*"***", To
date, most drugs that have been used to treat NDDs in
humans have focused on neurons but microglia and the
gut microbiome are potential future therapeutic targets.
The institution of preventive strategies at the population
level to optimize maternal and child health, especially
in at-risk pregnancies, will be an increasing priority.
Non-pharmacological interventions, such as environ-
mental enrichment for mothers or offspring exposed
to MIA, has been shown to protect the offspring from
behavioural dysfunction in animal models and should
be considered in humans™**".

Conclusions

Many questions remain unanswered regarding the
role of MIA in the pathogenesis of offspring NDDs in
humans. Despite the challenges of obtaining direct evi-
dence for this association in humans, multiple experi-
mental approaches are providing converging evidence
to support the MIA hypothesis. Collectively, the human
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