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Abstract

Pediatric	obstructive	sleep	apnea	has	signi7icant	negative	effects	on	health	and	behavior	in
childhood	including	depression,	failure	to	thrive,	neurocognitive	impairment,	and	behavioral
issues.	It	is	strongly	associated	with	an	increased	risk	for	chronic	adult	disease	such	as
obesity	and	diabetes,	accelerated	atherosclerosis,	and	endothelial	dysfunction.	Accumulating
evidence	suggests	that	adult-onset	non-communicable	diseases	may	originate	from	early	life
through	a	process	by	which	an	insult	applied	at	a	critical	developmental	window	causes	long-
term	effects	on	the	structure	or	function	of	an	organism.	In	recent	years,	there	has	been
increased	interest	in	the	role	of	epigenetic	mechanisms	in	the	pathogenesis	of	adult	disease
susceptibility.	Epigenetic	mechanisms	that	in7luence	adaptive	variability	include	histone
modi7ications,	non-coding	RNAs,	and	DNA	methylation.	This	review	will	highlight	what	is
currently	known	about	the	phenotypic	associations	of	epigenetic	modi7ications	in	pediatric
obstructive	sleep	apnea	and	will	emphasize	the	importance	of	epigenetic	changes	as	both
modulators	of	chronic	disease	and	potential	therapeutic	targets.

Keywords:	epigenetic	mechanisms	of	disease,	fetal	programming,	obstructive	sleep	apnea,
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1.	Introduction

Pediatric	obstructive	sleep	apnea	(OSA)	is	a	disorder	characterized	by	recurring	upper
airway	obstruction	leading	to	intermittent	oxygen	desaturations,	sustained	levels	of	carbon
dioxide,	frequent	waking	during	the	night,	habitual	snoring,	and	excessive	daytime	sleepiness
in	children.	It	is	estimated	to	affect	as	many	as	13%	of	children	between	the	ages	of	3–6	years
old,	and	2–4%	of	middle-school	age	children	[1,2].	Infants	are	particularly	vulnerable	to
obstructive	sleep-disordered	breathing	due	to	multiple	predisposing	factors	that	are	often
associated	with	infants,	including	their	small	upper	airway	structure,	immature	pulmonary
mechanics	and	ventilatory	control,	high	arousal	threshold,	insensitive	laryngeal	chemore7lex,
and	a	REM-predominant	sleep	state	[3].	Childhood	obesity	is	also	a	signi7icant	risk	factor	for
OSA	[4]	and	reciprocally,	OSA	can	contribute	to	obesity	[5].	With	almost	170	million	children
currently	considered	obese,	and	at	least	half	of	those	children	maintaining	obesity	into
adulthood	[6],	the	number	of	children	with	undiagnosed	sleep	apnea	is	likely	very	high.	The
risk	of	pediatric	OSA	also	increases	in	vulnerable	populations,	such	as	children	from	low
socioeconomic	backgrounds,	especially	preterm	infants	[7].	For	example,	one	study	found
that	infants	born	prior	to	32	weeks’	gestation,	despite	having	normal	birth	weights,	exhibit
an	increased	hypoxic	ventilatory	response	indicative	of	enhanced	peripheral	chemoreceptor
activity,	and	a	higher	likelihood	of	OSA	diagnosis	later	in	childhood	[8,9].

Untreated	pediatric	OSA	often	leads	to	developmental	de7icits,	such	as	cognitive
impairments,	attention-de7icit/hyperactivity	disorder,	and	poor	academic	performance	[10].
Pediatric	OSA	is	also	associated	with	cardiovascular	dysfunction	and	deleterious	changes	in
metabolism.	In	addition	to	obesity	[4]	and	increased	insulin	resistance	[11],	cardiovascular
dysfunction	includes	elevated	blood	pressure	[12],	increased	systemic	proin7lammatory
cytokines	[13,14,15],	cardiac	left	ventricular	hypertrophy	[16],	and	endothelial	dysfunction
[17].	These	vascular,	metabolic,	and	cognitive	manifestations	of	OSA	during	a	child’s
developmental	period	can	have	major	consequences	later	in	life	and	are	associated	with
chronic	adult	disease	such	as	hypertension	[12],	diabetes	mellitus	[18,19],	atherosclerosis,
and	myocardial	infarction	[20]	(Figure	1).	These	outcomes	from	more	than	a	decade	of
research	underscore	that	pediatric	OSA	is	a	major	risk	factor	for	severe	health	consequences
in	adulthood.

Figure	1

Recurring	upper	airway	obstruction	leads	to	intermittent	oxygen	desaturations,	or	hypoxia.	Hypoxia-
mediated	epigenetic	mechanisms	such	as	DNA	methylation,	histone	modi7ications	and	non-coding	RNAs,
alter	both	the	chromatin	organization	and	accessibility	of	genes	for	transcription	factor	binding	as	well	as
the	rates	of	gene	transcription.	These	heritable,	but	reversible,	epigenetic	alterations	underly	human
adaptation	or	maladaptation	to	stimuli	and	may	modulate	chronic	disease.	Abbreviations—Me:	DNA	or
histone	methylation;	TSS:	transcription	start	site;	Ac:	histone	acetylation;	HIF-1:	hypoxia	inducible	factor	1;
HIF-2:	hypoxia	inducible	factor	2;	eNOS:	nitric	oxide	synthase	3;	SOD2:	superoxide	dismutase	2;	FOXP3:

forkhead	box	P3;	 :	decreased	expression;	 :	increased	expression.

Clinical	and	experimental	evidence	suggest	that	a	hallmark	of	OSA,	chronic	intermittent
hypoxia	(CIH),	is	a	major	contributor	to	the	deleterious	consequences	of	OSA.	Cyclical
exposure	to	hypoxia	stimulates	sympathetic	nerve	activity	[21],	generates	reactive	oxidative
species	(ROS),	and	stabilizes	hypoxia	inducible	factor	1	(HIF-1)	(reviewed	in	[22]).	HIF	is	a
transcription	factor	involved	in	oxygen	homeostasis	and	the	regulation	of	various	adaptive
responses	to	hypoxia,	including	angiogenesis,	metabolic	reprogramming,	and	cell	survival
[23,24].	A	recent	study	found	that	patients	with	OSA	have	chronic	stabilization	of	the	oxygen-
labile	HIF-1⍺	subunit	in	serum,	and	that	the	serum	levels	directly	correlate	with	the	number
of	oxygen	desaturations	during	sleep	[25].	Animal	models	of	OSA	have	shown	that
endothelial	dysfunction,	vascular	remodeling,	systemic	and	pulmonary	arterial	hypertension,
and	heart	failure	can	develop	in	response	to	CIH	[21,26,27,28,29,30]	and	that	HIF-1
stabilization	is	critical	for	eliciting	many	of	these	responses	[31,32].	Many	of	the	hypoxia-
mediated	perturbations	of	gene	expression	by	epigenetic	mechanisms	are	attributed	to	these
OSA	comorbidities	(Figure	1).	Such	heritable,	but	reversible,	epigenetic	alterations,	including
DNA	methylation,	histone	modi7ications,	and	the	activation	of	long-	and	short-	non-coding
RNAs	(lncRNA	and	miRNA,	respectively),	have	been	observed	in	response	to	hypoxia	and	CIH
[33,34,35,36].	Importantly,	drugs	targeting	the	enzymes	that	catalyze	these	dynamic
modi7ications	are	used	for	clinical	management	of	some	cancers	[37]	and	are	in	clinical	trials
for	neurological	disorders	and	cardiovascular	diseases	(reviewed	in	[38]).	Such	drugs,	or
drugs	having	similar	targets,	may	also	bene7it	pediatric	OSA	patients	by	lowering	their	risk	of
chronic	adult	disease;	however,	there	is	limited	information	about	the	associations	between
pediatric	OSA	and	epigenetic	alterations.	A	goal	of	this	review	is	to	highlight	what	is	currently
known	about	those	associations	and	to	emphasize	the	importance	of	epigenetic	changes	as
both	modulators	of	chronic	disease	and	potential	druggable	therapeutic	targets.

2.	Current	Treatments	for	Pediatric	OSA

The	most	common	treatment	for	OSA	in	children	is	adenoidectomy	and	tonsillectomy	(A&T).
A&T	has	highly	variable	ef7icacy	in	treating	OSA,	and	results	have	shown	that	the	effects	of
the	surgery	may	only	be	temporary	[39,40,41].	Continuous	positive	airway	pressure,	or	CPAP,
which	is	widely	used	to	treat	adult	OSA,	improves	vigilance	and	cognitive	function,	reduces
insulin	resistance,	and	is	moderately	effective	in	lowering	blood	pressure	in	adults	with	OSA
and	refractory	hypertension.	However,	the	use	of	CPAP	was	not	found	to	be	associated	with
reduced	risks	of	cardiovascular	disease	(CVD),	diabetes	mellitus,	or	death	for	patients	with
OSA	in	recent	randomized	clinical	trials	[42,43,44,45,46].	Additionally,	adherence	to	CPAP
can	be	dif7icult	for	adults,	and	even	more	so	in	children,	especially	those	with	behavioral
problems	and	developmental	delays	[47].	For	children	with	mild	OSA	(apnea–hypopnea
index	(AHI)	between	1	and	5),	high-potency	corticosteroids	applied	intranasally	has	led	to
mild	improvements	in	AHI	and	blood	oxygen	levels	[48].	These	steroids	have	also	been
shown	to	reduce	the	secretion	of	in7lammatory	cytokines	IL-6,	IL-8,	and	TNF-⍺,	which	may
reduce	increased	systemic	in7lammation	in	children	with	OSA	[10].	Nevertheless,	there	is	a
need	for	more	targeted	therapeutic	treatments	as	little	is	known	about	the	longitudinal
effects	of	pediatric	OSA	and	whether	current	treatments	could	prevent	any	long-term
consequences	of	CIH.

3.	Epigenetic	Mechanisms	in	OSA

The	epigenome	harbors	important	clues	regarding	the	molecular	mechanisms	underlying
human	adaptation	or	maladaptation	to	stimuli	[49,50,51].	In	recent	years,	the	7ield	of
epigenetics	has	gained	substantial	interest	as	a	potential	mechanism	underlying	the	etiology
and	phenotypic	variation	of	multiple	diseases	[52,53,54,55].	Epigenetic	mechanisms	that
modulate	gene	regulation	include	DNA	methylation,	histone	post	translational	modi7ications,
and	noncoding	RNAs,	such	as	microRNAs	and	long	noncoding	RNAs.	All	of	these	gene
regulators	are	in7luenced	by	the	environment	and	are	likely	to	have	an	important	role	in	the
pediatric	basis	of	adult	disease	susceptibility	[56].	These	epigenetic	modi7ications	alter	both
the	chromatin	organization	and	accessibility	of	genes	for	transcription	factor	binding	thereby
modifying	their	expression	and	the	expression	of	gene-related	products.	Chromatin
organization	is	intimately	linked	to	varied	states	experienced	by	any	cell	in	its	lifetime,
whereby	many	chromatin	changes	occur	during	development	in	mammals	[57,58],	in
embryonic	stem	cells	transitioning	to	a	differentiated	state	in	vitro	[59],	and	in	various
diseases	[60].	For	example,	epigenetic	alterations	have	been	associated	with	hypoxia	in
cancer	and	a	highly	complex	hypoxia–epigenetic	interaction	is	observed	during
carcinogenesis	and	tumor	progression	[61].	Given	the	importance	of	epigenetics	in
in7luencing	cell	functions,	a	better	understanding	of	both	normal	and	abnormal	epigenetic
processes	will	provide	deeper	insight	into	the	acute	and	chronic	effects	of	pediatric	OSA	and
may	reveal	potential	new	therapies	involving	epigenetic	mechanisms	to	prevent	those	effects
(Figure	1).	The	following	sections	brie7ly	explain	the	three	primary	epigenetic	regulatory
mechanisms	(DNA	methylation,	histone	modi7ications,	and	noncoding	RNAs)	and	discuss
their	impact	on	long-term	health	during	pediatric	OSA.

3.1.	DNA	Methylation

During	the	past	decade,	investigations	of	epigenetic	modi7ication	in	OSA	have	become	more
frequent	and	largely	focus	on	DNA	methylation	in	circulating	leukocytes.	DNA	methylation	is
a	heritable	epigenetic	mark	involving	the	covalent	transfer	of	a	methyl	group	to	the	C-5
position	of	the	cytosine	ring	of	DNA.	The	mechanism	by	which	DNA	methylation	regulates
gene	expression	involves	blocking	the	binding	of	transcription	factors	to	DNA	and	the
recruitment	of	proteins	containing	a	methylated	CpG-binding	domain	to	inhibit	gene
expression.	DNA	methylation	is	catalyzed	by	DNA	methyltransferases	(DMNTs).	DNMT1	is
generally	responsible	for	maintenance	of	methylation,	while	DNMT3a	and	DNMT3b	perform
de	novo	methylation	[62].	Depending	on	the	DNA	sequence	methylated,	hypermethylation
and	hypomethylation	can	have	either	an	activating	or	suppressive	effect	on	gene	expression,
although	hypermethylation	is	generally	considered	repressive.

Clinical—Although	there	are	limited	clinical	studies	of	methylation	patterns	in	pediatric	OSA
patients,	important	patterns	have	been	identi7ied	that	are	relevant	for	in7lammation,
endothelial	dysfunction,	and	CVD.	To	determine	if	epigenetic	changes	of	in7lammatory	genes
are	associated	with	divergent	in7lammatory	phenotypes	in	children	with	OSA,	one	group
performed	methyl	quantitative	PCR	array	assays	followed	by	pyrosequencing	of	genomic
DNA	extracted	from	blood	samples	of	pediatric	OSA	patients.	They	found	reduced	expression
and	hypermethylation	at	intron	1	of	Forkhead	Box	P3	(FOXP3),	a	gene	critically	important	in
regulation	of	the	Th1	and	Th2	cytokine	balance	[63].	Methylation	of	the	FOXP3	gene	was
directly	correlated	with	OSA	severity,	as	measured	by	AHI.	This	led	to	the	postulation	that
during	pediatric	OSA,	FOXP3	methylation	suppresses	FOXP3	expression,	causing	an
imbalance	of	the	Th1/Th2	cytokines.	Conversely,	a	recent	study	investigating	the
development	of	subclinical	atherosclerosis	in	adult	patients	with	severe	OSA	found	that
plasma	FOXP3	expression	and	FOXP3	intron	1	methylation	was	no	different	than	that	of
control	patients	regardless	of	C-reactive	protein	expression	[64].	These	divergent	data
demonstrate	the	probable	and	important	role	of	developmental	maturation	in	disease
manifestation	and	progression.

It	was	previously	shown	that	expression	of	the	gene	encoding	endothelial	nitric	oxide
synthase	(NOS3	or	eNOS)	is	highly	regulated	by	epigenetic	mechanisms	including	both	CpG
methylation	and	histone	modi7ications	[65,66],	and	that	these	modi7ications	at	birth	have
been	associated	with	bone	density	and	obesity	later	in	childhood	[65,67].	These	data
motivated	another	study	aimed	at	investigating	endothelial	dysfunction	in	children	with	OSA.
In	that	study,	targeted	pyrosequencing	of	NOS3	was	used	to	identify	hypermethylation	at	the
core	promoter	region	of	the	gene,	which	was	correlated	with	reduced	NOS3	activity	and
increased	peripheral	vascular	dysfunction	in	children	with	OSA	[17].

Preclinical—There	is	increasing	awareness	that	environmental	factors	during	prenatal	and
early	postnatal	periods	in7luence	developmental	programming	of	homeostatic	mechanisms
that	profoundly	impact	susceptibility	to	disease.	Accordingly,	Nanduri	et	al.	exposed	neonatal
rats	to	CIH	as	a	preclinical	model	to	phenocopy	OSA	and	investigated	their	cardiorespiratory
function	as	adults.	They	found	that	the	adult	rats	which	were	exposed	to	CIH	as	neonates	had
carotid	body	hypoxic	hypersensitivity	that	caused	irregular	breathing,	apnea,	and
hypertension	[68].	Enhanced	carotid	body	hypoxic	sensitivity	was	associated	with	elevated
oxidative	stress,	decreased	expression	of	genes	encoding	antioxidant	enzymes,	and	increased
pro-oxidant	enzymes.	Decreased	expression	of	the	Sod2	gene	in	the	carotid	body,	which
encodes	the	antioxidant	enzyme	superoxide	dismutase	2,	was	associated	with	DNA
hypermethylation	of	a	CpG	dinucleotide,	assessed	by	qPCR,	close	to	the	transcription	start
site	of	that	gene.	Importantly,	treating	neonatal	rats	with	decitabine,	an	inhibitor	of	DNA
methylation,	during	CIH	exposure	prevented	the	oxidative	stress,	enhanced	carotid	body
hypoxic	sensitivity,	and	reduced	autonomic	dysfunction	that	was	observed	in	untreated
neonatal	rats	[68].	These	7indings	underscore	a	role	for	epigenetic	regulation	of	the	genome
in	mediating	neonatal	programming	of	hypoxic	sensitivity	that	is	maintained	into	adulthood,
and	present	evidence	for	targeted	therapy	of	epigenetic	marks	for	re-programming.

3.2.	Histone	Modi7ications

The	study	of	histone	post	translational	modi7ications	(PTMs)	during	sleep	apnea	is	an
emerging	7ield.	Understanding	the	global	effects	of	individual	histone	modi7ications	that
culminate	to	create	a	“histone	code”	has	been	an	important	goal	for	determining	the	role
these	PTMs	have	in	modulating	both	acute	and	chronic	chromatin	accessibility	in	health	and
disease.	In	response	to	periods	of	hypoxia	during	OSA,	local	histone	PTMs	can	function	to
either	activate	or	suppress	the	transcription	of	genes	that	ultimately	results	in	a	sustained
response	to	the	hypoxic	periods.	There	are	limited	studies	reporting	histone	PTMs	in	adult
OSA	(reviewed	in	[69,70]),	and	to	our	knowledge,	there	are	no	reports	of	PTMs	in	the
pediatric	OSA	7ield.	The	following	sections	will	brie7ly	discuss	some	of	the	current	data	from
adult	OSA	studies	to	emphasize	the	importance	of	these	modi7ications	in	the	pathogenesis	of
OSA-induced	morbidity,	and	this	gap	of	knowledge	in	the	pediatric	population.	Although
histone	modi7ications	are	imposed	by	methylation,	acetylation,	ubiquitylation,
phosphorylation,	and	sumoylation	of	various	amino	acid	residues	[71],	methylation	and
acetylation	of	lysine	residues	are	the	most	studied	in	OSA	and	will	be	discussed	in	the
following	sections.

3.2.1.	Histone	Methylation

Histone	methylation	is	the	addition	of	methyl	groups	to	histone	tail	residues.	Methylation	of
histone	tails	is	governed	by	positive	and	negative	regulators,	and	each	mark	can	have	an
activating	or	suppressive	effect	on	transcription	depending	on	the	amino	acid	residue.
Achieved	through	the	action	of	histone	methyltransferases	or	histone	demethylases,	histone
lysine	methylation	can	occur	in	three	different	states:	mono-,	di-	or	trimethylation	[72].
Typically,	the	marks	that	activate	gene	transcription	include	the	di-	or	trimethylation	at	the
H3K4,	H3K36,	and	H3K79	sites	[73,74,75].	While	H3K4	trimethylation	acts	on	enhancer	and
promoter	regions,	H3K36	and	H3K79	act	over	gene	bodies	[73,74,75].	H3K9	and	H3K27
methylations	are	typically	considered	repressive	[76].

Adult	preclinical	histone	methylation—While	our	understanding	of	activating	or	repressive
histone	methylation	marks	has	grown	over	the	past	decades,	speci7ic	methylation	marks
associated	with	pediatric	sleep	apnea	have	yet	to	be	elucidated.	Accumulating	evidence	from
adult	OSA	studies	con7irm	the	presence	and	importance	of	these	marks	in	response	to	CIH.	In
a	recent	study	of	adult	mice	exposed	to	CIH,	macrophages	isolated	from	the	aorta	had
signi7icant	accumulation	of	the	repressive	histone	mark	H3K27me3	associated	with	anti-
in7lammatory	and	glutathione	redox	pathway	member	genes	that	protect	against
atherosclerosis,	such	as	peroxisome	proliferator-activated	receptor/retinoid	X	receptor	and
liver	X	receptor/retinoid	X	receptor	[77].	These	epigenetic	changes	occurred	in	parallel	with
recruitment	of	macrophages	to	the	aortic	wall	and	the	triggering	of	atherogenesis.	These
results	indicate	that	histone	modi7ication-mediated	activation	of	the	oxidative	stress	and
in7lammatory	pathways	may	be	involved	in	the	establishment	of	CIH-induced	endothelial
dysfunction,	atherosclerosis,	and	aortic	remodeling	in	OSA.

3.2.2.	Histone	Acetylation

Histone	acetylation	occurs	when	an	acetyl	group	is	transferred	onto	the	lysine	residue	of	a
histone	tail	and	generally	contributes	to	increased	accessibility	of	transcriptional	machinery
to	chromatin.	Histone	acetylation	is	achieved	through	the	catalytic	enzymes	known	as
histone	acetyltransferases	(HATs).	Conversely,	histone	deacetylases	(HDACs)	function	to
decrease	histone	acetylation,	thereby	reducing	accessibility	of	chromatin	to	transcriptional
regulators.	HDACs	are	strati7ied	into	four	different	classes	based	on	their	structure	and
function	[78].	HDAC	expression	and	subsequent	histone	acetylation	patterns	have	been
studied	minimally	in	adult	OSA,	and	results	suggest	a	direct	correlation	with	disease
phenotype.

Adult	clinical	histone	acetylation—In	adult	patients	with	moderately	severe	OSA,	expression
of	Sirtuin	1	(SIRT1),	a	Class	III	HDAC,	was	found	to	be	reduced	in	peripheral	blood	cells.
SIRT1	has	an	important	regulatory	role	over	transcriptional	regulators	such	as	p53,	NF-kB,
NOS3,	and	FOXO.	Moreover,	disruption	of	SIRT	function	has	been	implicated	in	metabolic	and
CVDs.	Following	3	months	of	CPAP,	expression	and	activity	of	SIRT1,	as	well	as	plasma	nitric
oxide	derivative,	were	restored	[79].	This	result	highlights	both	the	potential	plasticity	of
inducing	and	removing	histone	acetylation	and	the	signi7icant	role	of	acetylation	in
pathogenesis.

In	a	separate	study	utilizing	adipose	tissue	from	OSA	patients,	a	number	of	gene	sets	were
upregulated	compared	to	control,	representing	the	pro-in7lammatory	NF- B	pathway	and	the
proteolytic	ubiquitin/proteasome	module	[80].	Further	network	analysis	of	these	pathways
suggested	HDAC2	as	a	hub	protein	for	this	dysregulation	[81].	Interestingly,	HDAC2	has
previously	been	shown	to	physically	interact	with	FOXO3a	and	regulate	FOXO3a-dependent
gene	transcription	pathways	such	as	in7lammation,	apoptosis,	and	the	response	to	oxidative
stress	[82,83].

Adult	preclinical	histone	acetylation—To	identify	the	mechanism	underlying	accelerated
atherogenesis	in	OSA	patients,	Cortese	and	colleagues	exposed	mice	to	CIH	and	found
increased	accumulation	and	proliferation	of	pro-in7lammatory	macrophages	expressing
CD36	in	the	aorta	[77].	Assessed	by	ChIP-seq,	the	macrophages	had	signi7icant	accumulation
of	the	active	histone	mark	H3K9Ac	associated	with	genes	of	pro-in7lammatory	and	oxidative
stress	signaling	pathway	members,	including	HIF-1,	p53,	NF- B,	tumor	growth	factor-β,
FOXO4,	and	IL-6	[77].	Importantly,	discontinuation	of	CIH	did	not	elicit	signi7icant
improvements	in	aortic	wall	macrophage	phenotype,	suggesting	long-term	CIH-induced
changes	may	not	be	reversible	solely	by	cessation	of	cyclic	hypoxia.

A	recent	elegant	study	using	rat	pheochromocytoma	(PC)-12	cells,	mice,	and	rats,	found	that
HDAC5	modulates	CIH-induced	autonomic	dysfunction.	In	this	study,	Wang	et	al.	showed	that
CIH	reduces	HDAC	activity	by	promoting	proteasomal	degradation	of	HDAC3	and	HDAC5,
contributing	to	increased	histone	3	acetylation	as	well	as	increased	HIF-1	stabilization
through	lysine	acetylation	of	the	HIF-1⍺	subunit	[84].	The	resulting	increased	HIF-1
transcriptional	activity	prompted	sympathetic	nerve	activation	and	hypertension	in	mice	and
rats.	Other	common	acetylation	marks	that	are	activated	at	enhancer	and	promoter	regions
include	H3K27Ac	[85]	and	H4K16Ac	[86];	however,	there	is	a	general	lack	of	knowledge
regarding	how	these	marks	contribute	to	adult	or	pediatric	obstructive	sleep	apnea.

3.3.	Noncoding	RNAs

Noncoding	RNAs	consist	of	microRNAs	(miRNAs)	and	long	non-coding	RNAs	(lncRNAs).	Over
the	past	decade,	the	understanding	of	the	role	of	RNA	has	shifted;	there	is	increasing
evidence	that	only	1–2%	of	RNA	codes	for	proteins	[87,88],	while	non-coding	RNA	has	a
predominant	and	essential	role	in	modulating	gene	expression.

3.3.1.	miRNA

MicroRNAs	are	single-stranded	RNAs	that	are	18–22	nucleotides	in	length	and	negatively
regulate	gene	expression	at	the	post	transcriptional	level	by	binding	to	mRNA,	which	can
then	lead	to	translational	repression	[89,90].	Considered	an	ideal	biomarker	in	the	era	of
precision	medicine,	miRNAs	have	the	capacity	to	regulate	most	protein	encoding	genes;	thus,
the	up-	or	downregulation	of	certain	miRNAs	can	have	downstream	effects	on	target	genes.
MicroRNAs	have	been	studied	considerably	in	adult	OSA,	but	comparatively	little	is	known
about	miRNAs	in	pediatric	OSA.	To	date,	only	two	clinical	studies	have	investigated	miRNAs
in	children	with	OSA.	These	studies	are	discussed	below.

Clinical	miRNA—Since	cardiovascular	effects	such	as	elevated	blood	pressure	and	vascular
abnormalities	are	associated	with	OSA,	one	group	investigated	whether	circulating	exosomal
miRNAs	of	children	with	OSA	differentiate	based	on	endothelial	functional	status.	They	used
microarray	expression	data	to	identify	reduced	miRNA-630	expression	in	plasma	exosomes
of	children	aged	4–12	with	OSA	and	endothelial	dysfunction,	an	early	risk	factor	for
atherosclerosis	and	CVD	[91].	Importantly,	mimic	miR-630	administered	to	human
endothelial	cells	lacking	miRNA-630	in	vitro	restored	indices	of	endothelial	cell	function.
Additional	gene	target	discovery	experiments	further	revealed	that	miRNA-630	regulates
416	gene	targets	that	include	the	NRF2,	AMP	kinase,	and	tight	junction	pathways.	As	such,
the	diagnosis	and	treatment	of	OSA	associated	CVD,	before	the	onset	of	irreversible	disease,
is	essential.

Elevated	serum	miRNA-92a	has	previously	been	found	in	patients	with	coronary	artery
disease	and	is	known	to	elicit	endothelial	dysfunction	and	early	onset	CVD	[92,93].	In	an
effort	for	earlier	diagnosis	of	CVD	in	OSA,	another	group	tested	for	elevated	miR-92a	in
children	and	adults	with	OSA	to	determine	its	potential	to	serve	as	a	biomarker	for	childhood
diagnosis	of	OSA	associated	CVD.	They	found	upregulation	of	miR-92a	in	the	serum	of	both
adults	and	children	diagnosed	with	OSA,	with	expression	levels	correlating	to	disease
severity	[94].	These	data	complement	the	7indings	from	adult	OSA	patient	studies	that	have
identi7ied	over	100	dysregulated	plasma	miRs	with	target	genes	highly	enriched	in	metabolic
signaling	[95],	CVDs,	in7lammation	and	cancer	pathways	[90].

3.3.2.	LncRNA

Long	non-coding	RNAs	consist	of	RNA	strands	that	are	longer	than	200	nucleotides.	These
lncRNAs	can	be	up-	or	downregulated	in	disease	progression	and	can	modulate	gene
expression	through	a	variety	of	mechanisms	such	as	altering	chromatin	recruitment	or
chromatin	modi7iers	and	can	suppress	transcription	initiation	by	interfering	with	RNA
polymerase	[96].	LncRNAs	have	been	studied	in	the	development	of	obesity,	with
implications	in	the	process	of	adipogenesis	through	the	modulation	of	the	gene	expression	of
cell	cycle	marker	genes	including	cyclin	B,	D,	and	E	[97].	LncRNAs	also	have	a	key	function	in
mitigating	myocardial	infarction	and	myocardial	ischemia–reperfusion	injury,	and	heart
failure	(reviewed	in	[98]).	There	are	numerous	publications	that	describe	the	role	of	lncRNAs
in	metabolic	syndromes	such	as	obesity,	type	2	diabetes,	CVD,	and	pulmonary	hypertension,
all	of	which	are	comorbidities	of	sleep	apnea.	However,	only	a	few	published	studies	have
investigated	the	role	of	lncRNAs	in	the	genesis	and	progression	of	OSA	in	adults	and	more
importantly,	in	children.

Clinical	lncRNA—Associations	between	decreased	glucocorticoid	receptor	⍺	(GR⍺)
expression	and	in7lammation	in	the	adenoids	of	children	with	OSA	have	been	identi7ied.	In	an
effort	to	describe	the	role	and	mechanism	of	GR⍺	in	OSA	pathogenesis,	Zhou	et	al.	[99]	found
lncRNA	XIST	as	closely	associated	with	GR⍺,	and	its	increased	expression	in	adenoids	of
pediatric	OSA	patients.	Using	NP69	cells,	lncRNA	XIST	reduced	expression	of	GR⍺	which	then
signi7icantly	increased	in7lammatory	cytokines,	including	interleukin	(IL)-8,	TNFa,	IL-6,	and
IL-1β.	These	data	link	elevated	lncRNA	XIST	expression	in	pediatric	OSA	patients	to
increased	in7lammation	via	downregulation	of	GR⍺.	To	our	knowledge,	this	is	the	only
published	report	to-date	of	lncRNA	expression	pro7iles	in	children	with	OSA,	despite	the
abundance	of	compelling	evidence	that	lncRNA	are	differentially	regulated	in	adults	with
OSA	[100],	in	response	to	cyclic	hypoxia,	and	are	linked	to	CVD.	A	deeper	understanding	of
how	lncRNAs	regulate	gene	expression	in	pediatric	sleep	apnea	will	likely	identify	promising
new	therapeutic	targets	that	could	prevent	the	severe	adult	complications	and	disease	that
originate	from	childhood	OSA.

4.	Epigenetic	Therapies

Although	DNA	methylation	and	histone	modi7ications	are	endogenously	reversible,	these
modi7ications	that	develop	in	childhood	due	to	sleep	apnea	are	likely	to	have	a	long-lasting
effect	on	the	cardiovascular	system	that	will	continue	with	the	child	into	adulthood,	as	is
evidenced	by	preclinical	studies	of	DNA	methylation	[68].	The	plasticity	of	chromatin
regulation	makes	targeting	the	enzymatic	machinery,	or	the	reversible	alterations
themselves,	an	attractive	strategy	for	therapeutic	intervention.	In	fact,	an	increasing	number
of	small	molecule	inhibitors	designed	to	counteract	a	variety	of	epigenetic	regulators	are
currently	under	development	or	are	already	used	clinically.	Epigenetic	biomarkers	and
targeted	epigenetic	therapies	such	as	the	histone	deacetylase	(HDAC)	inhibitors	Vorinostat,
Panobinostat,	Romidepsin	and	Belinostat,	are	approved	for	certain	lymphomas	and
myeloma.	Cardiovascular	studies	using	HDAC	inhibitors	have	shown	promise	in	pre-clinical
management	of	cardiac	hypertrophy,	heart	failure,	oxidative	stress,	hypertension	and	cardiac
7ibrosis	[101,102,103,104].	Recently,	Givinostat,	a	clinical-stage	inhibitor	of	HDAC	catalytic
activity	was	shown	ef7icacious	in	two	distinct	murine	models	of	diastolic	dysfunction	with
preserved	ejection	fraction,	by	relieving	impaired	cardiac	myo7ibril	relaxation	[105].	HDAC
inhibitors	have	also	been	shown	to	have	a	dose-dependent	anti-in7lammatory	effect,
decreasing	in7lammatory	cytokines	such	as	TNF-⍺	and	IFN-β	in	models	of	irritable	bowel
disease	[106].	Determining	the	extent	of	epigenetic	alterations	that	occur	in	response	to
pediatric	OSA	and	the	mechanisms	by	which	they	in7luence	the	neonatal	basis	of	disease
susceptibility	and	progression	is	required	for	development	of	new	epigenetic	targeted
treatments	for	OSA	in	neonates	and	adults.

5.	Concluding	Remarks

Pediatric	OSA	has	signi7icant	negative	effects	on	behavior	and	health	in	children,	including
depression,	failure	to	thrive,	neurocognitive	impairment,	excessive	daytime	sleepiness,
increased	risk	for	systemic	and	pulmonary	hypertension,	and	behavioral	issues	suggestive	of
attention-de7icit/hyperactivity	disorder	[107,108].	Importantly,	pediatric	OSA	is	strongly
associated	with	an	increased	risk	for	a	variety	of	end-organ	injury	and	dysfunction	in	adults,
such	as	obesity	and	diabetes,	accelerated	atherosclerosis,	and	endothelial	dysfunction;
syndromes	that	impose	both	immediate	and	long-term	morbidities	resulting	in	high
healthcare	costs	[3,40].	Deeper	investigations	of	epigenetic	regulators	that	interact	to	modify
gene	expression	will	provide	not	only	detailed	mechanistic	understanding	of	disease
progression	but	also	new	insights	into	the	fetal	basis	of	adult	disease	susceptibility.	Building
upon	the	evidence	that	DNA	methylation,	post-translational	histone	modi7ications,	and
noncoding	RNAs	all	modulate	cellular	reprogramming	due	to	exposure	to	hypoxia,	a
thorough	understanding	of	how	these	chromatin	modi7ications	work	synergistically	will	be
crucial	for	developing	the	most	effective	targeted	treatments.	The	promise	is	that	such
treatments	will	target	the	most	fundamental	underpinnings	of	chronic	disease	by	blunting
the	deleterious	epigenetic	programming	that	occurs	during	pediatric	OSA.	Gaining	a	broader
understanding	of	how	epigenetic	regulators	are	modulated	during	a	child’s	developmental
period	and	are	dysregulated	due	to	cyclic	hypoxia	is	an	extremely	important	direction	for	the
future	of	pediatric	OSA	research.
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