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Abstract

Background

Although	the	genomes	of	monozygotic	twins	are	practically	identical,	their	methylomes	may
evolve	divergently	throughout	their	lifetime	as	a	consequence	of	factors	such	as	the
environment	or	aging.	Particularly	for	young	and	healthy	monozygotic	twins,	DNA
methylation	divergence,	if	any,	may	be	restricted	to	stochastic	processes	occurring	post-
twinning	during	embryonic	development	and	early	life.	However,	to	what	extent	such
stochastic	mechanisms	can	systematically	provide	a	stable	source	of	inter-individual
epigenetic	variation	remains	uncertain	until	now.

Results

We	enriched	for	inter-individual	stochastic	variation	by	using	an	equivalence	testing-based
statistical	approach	on	whole	blood	methylation	microarray	data	from	healthy	adolescent
monozygotic	twins.	As	a	result,	we	identiHied	333	CpGs	displaying	similarly	large	methylation
variation	between	monozygotic	co-twins	and	unrelated	individuals.	Although	their
methylation	variation	surpasses	measurement	error	and	is	stable	in	a	short	timescale,
susceptibility	to	aging	is	apparent	in	the	long	term.	Additionally,	46%	of	these	CpGs	were
replicated	in	adipose	tissue.	The	identiHied	sites	are	signiHicantly	enriched	at	the	clustered
protocadherin	loci,	known	for	stochastic	methylation	in	developing	neurons.	We	also
conHirmed	an	enrichment	in	monozygotic	twin	DNA	methylation	discordance	at	these	loci	in
whole	genome	bisulHite	sequencing	data	from	blood	and	adipose	tissue.

Conclusions

We	have	isolated	a	component	of	stochastic	methylation	variation,	distinct	from	genetic
inHluence,	measurement	error,	and	epigenetic	drift.	Biomarkers	enriched	in	this	component
may	serve	in	the	future	as	the	basis	for	universal	epigenetic	Hingerprinting,	relevant	for
instance	in	the	discrimination	of	monozygotic	twin	individuals	in	forensic	applications,
currently	impossible	with	standard	DNA	proHiling.
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Background

Compared	to	its	genomic	counterpart,	human	epigenomic	inter-individual	variation	remains
relatively	unexplored.	Particularly	for	cytosine-guanine	dinucleotide	(CpG)	methylation,	the
currently	known	sites	of	substantial	inter-individual	variation	are	restricted	to	a	limited
number,	as	most	are	completely	unmethylated	or	methylated	across	healthy	populations	[1,
2].	Via	epigenome-wide	association	studies	(EWAS)	numerous	traits	have	been	associated	to
epigenetic	variation;	trait-associated	CpGs,	however,	tend	to	display	small	effect	sizes	[3,	4].
The	main	drivers	of	inter-individual	DNA	methylation	variation	identiHied	so	far	are	genetics,
sex,	cell	type/tissue,	environment,	and	aging	[5–7].	The	latter	includes	both	the	epigenetic
clock,	i.e.,	the	direct	association	between	CpG	methylation	and	age	across	individuals,	and	the
epigenetic	drift,	deHined	as	individual-speciHic	accumulation	of	stochastic	and	environmental
changes	over	time	[8,	9].

On	this	note,	it	was	widely	popularized	that	healthy	monozygotic	(MZ)	twins	sharing	sex,	age,
and	practically	identical	genomes	display	indistinguishable	methylomes	at	a	young	age,	while
at	an	older	age,	differential	exposures	to	environmental	factors	promote	methylation
divergence	over	time	(epigenetic	drift)	[10,	11].	As	exceptions	to	the	above,	developmental
stochastic	mechanisms	promoting	epigenetic	variation	do	exist;	for	example,	X-inactivation	or
genomic	imprinting	[12,	13].	Moreover,	metastable	epialleles	were	recently	identiHied,
presenting	methylation	levels	that	are	stochastically	established	during	early	development,
but	faithfully	passed	on	across	cell	divisions	and	differentiation	[14–16].	In	practice,	however,
metastable	epiallele	variation	in	MZ	co-twins	is	limited	due	to	the	phenomenon	of	twin
super-similarity;	namely,	a	stochastic	setting	of	methylation	states	prior	to	the	twinning
process	results	in	identical	methylation	proHiles	for	both	twins	[17].

Some	attempts	to	map	epigenome-wide	variation	via	twin	models	have	been	previously
reported.	Particularly	successful	by	employing	both	MZ	and	dizygotic	(DZ)	twins,	ACE	models
decompose	the	total	variance	into	an	additive	genetic	component	(A),	a	common
environmental	component	(C),	and	an	unshared	environmental	component	(E).	The	E
component	encompasses	both	intra-individual	measurement	error	and	inter-individual
stochastic	biological	variation	since	both	qualify	as	non-genetic	inHluence	unshared	between
twins	[5,	6].	As	a	result,	CpG	sites	displaying	no	biological	variation	and	hence	only	subject	to
measurement	error	display	relative	E	components	close	to	1.	This	turns	out	to	be	a	problem
as	generally	ACE	models	are	Hitted	to	every	CpG,	disregarding	whether	they	present	inter-
individual	variation	or	not.	Separating	between	measurement	error	and	genuine	stochastic
inter-individual	epigenetic	variation	persists	as	a	long-standing	challenge	in	epigenetics.

Integrating	all	this	information,	if	the	prevalence	of	stochastic	epigenetic	inter-individual
variation	surpassing	intra-individual	measurement	error	is	frequent	enough,	this	could	serve
as	a	source	of	variation	that	promotes	divergence	between	any	two	individuals	including	MZ
twins.	Hence,	we	hypothesized	that	such	a	universal	stochastic	epigenetic	component	exists
and	can	be	isolated	following	a	MZ	twin	study	design.	This	concept	of	universal	epigenetic
variation	is	the	opposite	to	rare	epigenetic	variation	that	only	affects	a	small	subset	of	MZ
twin	pairs,	for	example,	due	to	pathological	discordance.	Assuming	limited	genetic	inHluence,
absolute	methylation	differences	of	CpGs	susceptible	to	inter-individual	stochastic	variation
are	expected	to	be	similarly	distributed	between	MZ	co-twins	and	unrelated	pairs	of
individuals.	However,	to	avoid	other	stochastic	components,	whose	predominance	increases
with	age	such	as	epigenetic	drift,	we	decided	to	direct	our	analysis	to	MZ	twins	of	young	age.
That	way,	we	also	expected	to	enrich	for	post-twinning	stochastic	DNA	methylation
differences	having	originated	during	embryonic	development	and	early	life	rather	than
changes	due	to	epigenetic	drift.

Based	on	these	hypotheses,	the	objective	of	this	study	was	to	identify	CpGs	that	display	inter-
individual	methylation	variation	equivalent	between	young	co-twins	and	unrelated
individuals	that	cannot	be	explained	by	epigenetic	drift	and/or	measurement	error.	Given
that	such	a	universal	stochastic	component	is	expected	to	generate	inter-individual	variation
for	every	pair	of	individuals	including	MZ	twins,	we	envision	that	it	could	serve	as	the	basis	of
an	epigenetic	Hingerprint,	relevant	for	individualizing	MZ	twins	in	forensic	applications	in	the
future,	although	further	research	is	necessary.	To	address	the	different	questions	posed
throughout	the	manuscript,	we	integrated	11	publicly	available	datasets.	We	considered	data
derived	from	two	methods:	the	Illumina	InHinium	HumanMethylation450K	Beadchip	array
(450K),	covering	> 450,000	CpG	sites	and	the	whole	genome	bisulHite	sequencing	(WGBS),
currently	considered	as	the	gold	standard	in	methylomics.	Among	them,	we	included	MZ
twins,	unrelated	individuals,	longitudinal	samples,	and	technical	replicates	obtained	from
whole	blood,	adipose	tissue,	and	post-mortem	tissues.

Results

Discovery	of	equivalently	variable	(ev)CpGs

In	search	for	CpGs	displaying	similar	variation	between	MZ	co-twins	and	unrelated
individuals,	an	epigenome-wide	discovery	phase	was	implemented	in	450K	CpG	methylation
data	derived	from	whole	blood	of	426	MZ	twin	pairs	sampled	at	age	18	(dataset-A,	Table	1)
[5].	Described	thoroughly	in	Additional	Hile	3:	Supplementary	methods,	we	Hirstly
implemented	strict	quality	control	and	preprocessing	(Additional	Hile	1:	Figures	S1–5).	For
example,	we	excluded	SNP-containing,	cross-reactive,	low-quality,	and	X,Y-chromosomal
probes,	controlled	for	predicted	cell	composition	differences	(Additional	Hile	1:	Figure	S5)	and
employed	three	different	normalization	methods	in	parallel	(Additional	Hile	1:	Figure	S6).
Secondly,	given	that	CpGs	with	no	biological	variation	display	only	measurement	error	and
are	also	expected	to	show	equivalent	co-twin	and	inter-individual	variation,	we	pre-selected
variably	methylated	CpGs	using	empirical	cut-offs	for	inter-individual	variation	(inter-
quantile	range	(IQR) > 0.07)	and	replicability	(intra-class	correlation	coefHicient	(ICC) > 0.37)
[27].

Table	1

Description	of	the	13	DNA	methylation	datasets	employed	in	this	study

Dataset Dataset Technology Tissue Number Ethnicity Female
(%)

Mean
age
(years)

A E-risk	[5] 450K Whole	blood 426	MZ	twin
pairs

British 48.6 ≈ 18

B Danish	twin
cohort	[18]

450K Whole	blood 146	MZ	twin
pairs

Danish 47.9 48.4

C1 Zhang	et	al.
[19]

450K Whole	blood 10	MZ	twin
pairs

Chinese 40.0 41.3

C2 450K Whole	blood 1	MZ	twin	pair
and	6
individuals

Chinese 37.5 29.3

D Shi	et	al.
[20]

450K Whole	blood 48	individuals Chinese 39.6 9.04

E NSPHS	[21] 450K Whole	blood 727	individuals Swedish 53.0 47.4

F TwinsUK
[22]

450K Whole	blood 328	MZ	twin
pairs

British 100 57.9

G ENID	[16] 450K Whole	blood 240	individuals Gambian 48.6 ≈ 2

H Lokk	et	al.
[23]

450K 17	post-
mortem	somatic
tissues

4	individuals Estonian 25.0 51.8

I TwinsUK
[24]

450K Adipose	tissue 97	MZ	twin
pairs

British 100 N/A

J Bollepalli	et
al.	[25]

450K Adipose	tissue 19	individuals Finnish 63.1 35.2

K1 TwinsUK
[26]

WGBS Whole	blood 7	MZ	twin	pairs British 100 59.1

K2 WGBS Adipose	tissue 7	MZ	twin	pairs British 100 60.7

Thirdly,	for	the	remaining	4652	variably	methylated	probes,	we	estimated	MZ	co-twin	and
inter-individual	variation	by	computing	absolute	methylation	differences	between	MZ	twin
pairs	and	all	combinations	of	unrelated	MZ	twin	individuals,	respectively.	We	then	employed
statistical	inference	under	the	scheme	of	equivalence	testing	to	test	whether	these
methylation	differences	are	similarly	distributed	(Fig.	1a).	This	approach	identiHied	333
equivalently	variable	CpGs	(evCpGs)	between	co-twins	and	unrelated	individuals	that	were
statistically	signiHicant	across	all	three	normalization	methods	employed	(Fig.	1b,	c,
Additional	Hile	1:	Figure	S6,	Additional	Hile	2).	To	ensure	that	our	statistical	approach	has	not
been	compromised	due	to	the	artiHicial	exploration	of	all	the	unrelated	individual	pairs	based
on	the	MZ	twin	dataset,	we	performed	additional	veriHication	tests	(Additional	Hile	3:
Supplementary	Methods,	Additional	Hile	1:	Figure	S7).	As	expected,	while	most	CpGs	covered
in	the	Illumina	450K	array	tend	to	present	low	inter-individual	variation	concordant	between
MZ	co-twins,	evCpGs	display	substantial	co-twin	and	inter-individual	variation	(Fig.	1d,
Additional	Hile	1:	Figure	S8).

Fig.	1

Discovery	of	evCpGs.	a	|Δβ| 	and	|Δβ| 	distributions	in	an	example	of	an	evCpG	(left)	and
a	variably	methylated	non-evCpG	(right).	Similarity	p	values	were	obtained	via	equivalence	testing	with	a
two	one-sided	tests	procedure.	b	Venn-Euler	diagram	displaying	signiHicant	hits	across	three	normalization
methods	(StrQN,	dasen	and	oob_RELIC_QN_BMIQ),	where	the	intersection	between	the	three	sets
corresponds	to	evCpGs.	c	Manhattan	plot	displaying	CpG	signiHicance	across	chromosomes	(odds	and	even
represented	either	in	blue	or	orange),	where	evCpGs	are	highlighted	in	green.	For	each	CpG,	we	used	the
maximal	p	value	across	three	normalization	methods.	d	Agreement	between	twins	measured	as	concordance
plotted	against	methylation	range	(see	Additional	Hile	3:	Supplementary	Methods	for	details),	where	evCpGs
are	highlighted	in	blue

evCpG	variation	versus	measurement	error

Within	our	pipeline,	given	that	the	exclusion	of	CpGs	subject	only	to	measurement	error	relies
heavily	on	the	correct	setting	of	empirical	thresholds,	it	was	of	importance	to	prove	that	our
selected	evCpGs	indeed	displayed	a	level	of	variation	larger	than	the	measurement	error.
Towards	this	goal,	we	Hirstly	checked	that	the	distributions	of	450K	array	technical	measures,
including	number	of	beads	per	probe,	high	detection	p	value	and	ICC	[27],	were	similar
between	evCpGs	and	non-signiHicant	CpGs	(Additional	Hile	1:	Figure	S9,	see	Additional	Hile
3:	Supplementary	methods	for	details).	This	analysis	conHirmed	that	our	pipeline	did	not	just
deliberately	enrich	for	CpGs	displaying	sub-standard	technical	performance	in	the
microarray.	Secondly,	employing	independent	data	from	the	Danish	Twin	Registry	(dataset-B,
Table	1)	[18],	we	conHirmed	that	evCpG	variation	was	indeed	signiHicantly	larger	in	MZ	co-
twins	than	in	technical	replicates	(Additional	Hile	1:	Figure	S10;	p	value = 4.3 × 10 ,
Kolmogorov-Smirnov).	Moreover,	evCpG	variation	was	large	enough	to	successfully	separate
technical	replicates	into	clusters	within	each	twin	pair	unlike	a	set	of	equal	number	of
genetically	inHluenced	CpGs	acting	as	negative	controls,	extracted	from	previously	reported
methylation	quantitative	trait	loci	(mQTL)	(Fig.	2)	[7].	This	was	also	true	on	a	single	twin	pair
with	technical	replicates	in	the	dataset	of	Zhang	et	al.	(dataset-C1)	(Additional	Hile	1:	Figure
S11A)	[19].

Fig.	2

Superior	evCpG	variation	in	MZ	twins	compared	to	technical	replicates.	a	A	subset	of	the	Danish	twin	cohort
including	3	twin	pairs	with	technical	replicates.	b	Heatmap	with	unsupervised	hierarchical	clustering
employing	329	out	of	the	333	evCpGs	and	equal	number	of	genetically	inHluenced	negative	control	probes.
Technical	replicates	within	MZ	twin	pairs	cluster	together	for	evCpGs,	unlike	negative	control	probes	that
cluster	per	microarray	chip	batch

Short-term	time	stability	of	evCpGs

Once	proven	that	the	observed	DNA	methylation	differences	at	evCpGs	were	greater	than
measurement	error	and	to	shed	light	on	their	hyper-variability,	we	examined	whether	evCpG
methylation	levels	behaved	erratically	in	time.	To	do	so,	we	moved	on	to	a	second	subset	of
the	dataset	from	Zhang	et	al.	(dataset-C2,	Table	1)	including	multiple	samples	from	6
unrelated	individuals	and	one	twin	pair	taken	up	to	9 months	apart.	Via	hierarchical
clustering,	we	observed	that	longitudinal	replicates	of	unrelated	individuals	tended	to	cluster
together	per	individual;	the	single	twin	pair	though	could	not	be	separated	into	its
longitudinal	replicates	(Fig.	3a).	From	these	Hindings,	we	conclude	that	evCpG	methylation	in
whole	blood	is	relatively	stable	in	time	as	temporal	variation	is	unable	to	overcome	inter-
individual	variation	at	least	regarding	the	tested	timescale.	For	a	more	quantitative	view	on
short	time	stability	of	evCpGs,	we	also	provide	the	temporal	ICC	distributions	obtained	from
estimates	by	Flanagan	et	al.	[28]	(Additional	Hile	1:	Figure	S11B).

Fig.	3

Time-stability	of	evCpGs.	a	A	subset	of	the	dataset	of	Zhang	et	al	that	includes	short-term	longitudinal
replicates	obtained	3,	6,	and	9 months	apart.	b	A	heatmap	with	unsupervised	hierarchical	clustering
employing	296	out	of	the	333	evCpGs	and	equal	number	genetics-dependent	negative	control	probes.
Longitudinal	replicates	cluster	together	like	negative	control	probes.	c	Epigenetic	clock	and	drift	of	evCpGs.	–
log (p	values)	for	association	are	plotted	against	–log (p	values)	for	heteroscedasticity,	with	respect	to	age.
The	colors	symbolize	signiHicance	for	association	(red),	heteroscedasticity	(blue)	or	both	(purple).	d	DNA
methylation	levels	plotted	against	age	for	example	evCpGs	highlighted	in	c;	males	are	represented	in	blue
and	females	in	pink,	while	mean	bin	methylation	±	sd	(window	length = 10	years,	offset = 2	years)	are
highlighted	in	red

Epigenetic	clock/drift	of	evCpGs

Once	evCpG	short-term	stability	was	conHirmed	and	given	that	we	used	adolescent	MZ	twins
in	the	initial	discovery	phase	rather	than	newborns,	we	next	investigated	whether
methylation	divergence	at	evCpGs	could	be	solely	explained	as	a	result	of	aging	in	the
timescale	including	infancy	and	adolescence.	Though	a	longitudinal	study	design	would	allow
us	to	identify	CpGs	susceptible	to	aging	at	an	individual	level,	we	here	focused	on	population
level	changes	in	DNA	methylation	(e.g.	universal	variation).	Under	a	cross-sectional	design,
the	epigenetic	clock	and	epigenetic	drift	can	be	observed	as	a	direct	association	or	increased
variation	with	age,	respectively.

On	this	note,	we	Hirst	examined	the	cross-sectional	dataset	of	Shi	et	al.	(dataset-D,	Table	1)
[20]	containing	48	children	aged	from	6.4	to	14.6 years.	From	the	set	of	evCpGs	(n = 333),
only	one	(0.3%)	showed	a	direct	association	between	age	and	DNA	methylation	(i.e.,
epigenetic	clock),	while	two	(0.6%)	showed	age-associated	increase	in	methylation	variation
(i.e.,	epigenetic	drift)	(Additional	Hile	1:	Figure	S12A).	Motivated	by	the	absence	of	strong
evidence	of	evCpG	aging	effects	in	this	narrow	period	between	late	childhood	and
adolescence,	we	moved	on	to	the	cross-sectional	dataset	of	727	individuals	of	the	Northern
Sweden	Population	Health	Study	[21]	with	a	wider	age	interval	ranging	from	14	to	94 years
(dataset-E,	Table	1).	Out	of	331	evCpGs	available	in	this	dataset,	122	(36.9%)	showed	only
age-associated	effects	(i.e.,	epigenetic	clock),	63	(19.0%)	showed	only	an	age-associated
increase	in	variation	(i.e.,	epigenetic	drift),	while	67	(20.2%)	showed	both	(Fig.	3c,	d).	Further
conHirming	the	inHluence	of	epigenetic	drift	on	evCpGs	in	a	broader	timeframe,	observed
absolute	methylation	differences	in	the	older	TwinsUK	cohort	(dataset-F,	Table	1)	[29]	were
signiHicantly	higher	than	in	the	adolescent	twins	used	for	evCpG	discovery	(Additional	Hile	1:
Figure	S12C;	p	value = 7.8 × 10 ,	Kolmogorov-Smirnov).	Thus,	evCpG	methylation	is	subject
to	epigenetic	drift	at	large	timescales	but	its	inHluence	in	the	period	between	late	childhood
and	adolescence	seems	to	be	minor.	To	trace	back	the	source	of	inter-individual	variation,	we
searched	for	data	from	even	younger	cohorts.	Moving	on	to	a	dataset	consisting	of	2-year-old
Gambian	children	(dataset-G,	Table	1),	strong	inter-individual	evCpG	variation	was	also
evident	(Additional	Hile	1:	Figure	S12B).	If	strong	deterministic	genetic	effects	were	to	be
predominant	on	evCpG	variation,	these	would	fuel	inter-individual,	but	not	co-twin	variation;
hence,	the	discovery	condition	of	equivalence	would	not	be	met.	For	this	reason,	it	is
improbable	that	strong	genetic	effects	are	a	major	contribution	to	the	inter-individual
variation	of	evCpGs	in	the	Gambian	children	cohort.	Together	with	the	lack	of	strong	evidence
for	epigenetic	drift	in	the	children	from	dataset-D,	we	conclude	that	epigenetic	drift	cannot	be
fully	responsible	for	the	observed	discordance	in	18-year-old	MZ	twins.	Thus,	evCpG
stochastic	variation	likely	originates	in	embryonic	development	and/or	early	life	but	is
ampliHied	over	a	lifetime	via	epigenetic	drift.

evCpG	methylation	in	other	tissues

As	tissue	type	is	known	to	be	a	strong	driver	of	DNA	methylation	variation,	we	aimed	to
assess	whether	this	was	also	the	case	for	evCpGs	that	we	had	identiHied	in	whole	blood.	In
addition,	after	having	discarded	genetic	effects,	observing	a	strong	correlation	between
tissues	would	serve	as	convincing	evidence	for	the	establishment	of	evCpG	methylation	in
early	development,	similarly	to	metastable	epialleles.

In	order	to	achieve	sufHiciently	large	numbers	of	different	tissues	per	individual,	we	made	use
of	a	panel	including	17	different	post-mortem	somatic	tissues	(dataset-H,	Table	1)	[23].	The
results	from	multi-dimensional	scaling	(MDS)	analysis	did	not	reveal	the	formation	of
clusters	per	individual	in	the	Hirst	two	principal	components,	indicating	that	evCpGs	are
subject	to	strong	variation	between	tissues	(Additional	Hile	1:	Figure	S13C).	This	effect
percolated	even	in	the	set	of	genetically	inHluenced	control	CpGs,	for	which	inter-individual
variation	was	pushed	back	to	the	second	principal	component	(Additional	Hile	1:	Figure
S13B).	This	could	be	due	to	reduced	data	quality	due	to	the	post-mortem	nature	of	the	tissue
or	simply	that	mQTL	discovered	in	the	blood	do	not	apply	to	other	tissues.

Setting	aside	the	idea	of	co-methylation	across	tissues,	we	aimed	to	investigate	whether	the
stochastic	behavior	of	evCpGs	itself	was	beyond	whole	blood.	Saliva	and	buccal	cells	are	the
second	most	employed	tissues	in	epigenomic	datasets;	however,	suitable	large	MZ	twin
datasets	are	not	publicly	available.	Therefore,	we	sought	to	replicate	the	effect	of	evCpGs	in
subcutaneous	adipose	tissue,	a	relatively	homogenous	tissue	composed	primarily	by
adipocytes,	with	only	a	minor	component	of	endothelial	cells	and	macrophages	[30].	Towards
this	goal,	we	employed	adipose	tissue	data	from	the	TwinsUK	cohort	that	includes	97	MZ
twin	pairs	(dataset-I,	Table	1),	in	which	we	replicated	a	total	of	154	(46%)	of	the	evCpGs	(Fig.	
4a).	Moreover,	we	also	conHirmed	short-term	temporal	stability	of	the	replicated	evCpGs	in
this	tissue	via	hierarchical	clustering	on	longitudinal	replicates	derived	from	obese
individuals	subject	to	weight	intervention	(dataset-J,	Table	1,	Additional	Hile	1:	Figure	S14A).
For	a	more	quantitative	interpretation,	we	also	estimated	temporal	ICCs	and	examined	their
distributions	(Additional	Hile	1:	Figure	S14B).	In	conclusion,	almost	half	of	the	identiHied
evCpGs	display	stochastic	variation	in	both	the	blood	and	adipose	tissue.

Fig.	4

evCpG	variation	in	other	tissues.	a	Replication	on	332	out	of	333	evCpGs	in	adipose	tissue.	–
log (equivalence	p	value)	is	plotted	against	IQR.	Threshold	lines	represent	IQR	Hilter	of	0.07	and	Bonferroni
signiHicance.	Numbers	in	red	highlight	the	number	of	hits	in	a	given	sector.	b	Gene	ontology	(GO)	term
enrichment	of	evCpGs	(red)	and	the	replicated	subset	in	adipose	tissue	(orange).	The	threshold	line	indicates
false	discovery	rate	of	0.05.	c	Whole	genome	bisulHite	sequencing	validation	on	epigenetic	discordance
between	MZ	twins	in	the	cPCDH	region	using	data	of	the	TwinsUK	cohort.	Here,	we	observe	the	dependence
between	signiHicance	and	coverage	in	the	cPCDH	region.	Twin	pairs	1	to	5	were	assayed	in	both	tissues.	For
twin	pair	8	in	whole	blood,	no	sites	were	shared	between	twins	and	hence,	enrichment	could	not	be
performed.	Twin	pairs	are	highlighted	in	green	when	a	signiHicant	enrichment	in	|Δβ| ≥ 0.4	on	the	cPCDH	loci
with	respect	to	the	background	is	observed.

Functional	annotation	of	evCpGs

In	order	to	investigate	the	functional	role	of	evCpGs,	we	Hirstly	sought	for	insights	in	the
sequence	context	of	evCpGs.	We	performed	DNA	motif	enrichment	analysis,	but	no	motif
showed	a	large	and	statistically	signiHicant	odds	ratio	(Additional	Hile	1:	Figure	S15,	S16A).
Looking	closer	in	the	sequences	surrounding	evCpGs,	we	observed	a	signiHicantly	diminished
[G + C]	content	(p	value = 1.1 × 10 ,	Mann-Whitney	U	test,	Additional	Hile	1:	Figure	S16B),
consistent	with	variable	methylation	as	previously	reported	[31].	However,	we	did	not
observe	a	signiHicant	decrease	in	CpG	island-associated	CpGs	(Additional	Hile	1:	Figure	S17B).

To	uncover	other	putative	functional	roles	of	evCpGs,	we	consulted	a	wide	range	of	public
databases	and	annotations.	Examining	the	evCpG	relationship	to	nearby	genes,	we	noted
statistically	signiHicant	proHile	divergence	compared	to	the	background	(p	value  = 1 × 10 ;
n  = 100,000;	Fisher’s	exact	test),	driven	by	an	enrichment	in	CpGs	not	associated	to
genes	and	CpGs	associated	to	1st	Exon	and	within	1500 bp	range	from	transcription	starting
site	(TSS ),	as	well	as	a	depletion	in	CpGs	associated	to	5′-untranslated	regions	(5′-UTR)
and	within	200 bp	range	from	transcription	starting	site	(TSS )	(Additional	Hile	1:	Figure
S17A).	Altogether,	this	suggests	that	evCpGs	tend	to	lie	outside	important	regions	for	gene
regulation.	To	further	test	this	concept,	we	made	use	of	the	15-state	ChromHMM	model	from
peripheral	blood	mononuclear	cell	(PBMC)	[32],	which	is	a	Hidden	Markov	Model	(HMM)
representation	of	the	genome	based	on	the	patterns	of	post-translational	modiHications	of
histones	and	DNA	methylation	that	segments	different	genomic	loci	into	15	types	of
chromatin	regulation.	ConHirming	our	prior	notes,	we	observed	statistically	signiHicant
divergence	in	chromatin	states	between	evCpGs	compared	to	the	background	(p	value = 1 × 
10 ;	n  = 100,000;	Fisher’s	exact	test).	More	speciHically,	a	strongly	signiHicant	increase
in	heterochromatin	in	addition	to	both	strongly	and	weakly	polycomb	repressed	states	were
observed	together	with	a	statistically	signiHicant	depletion	in	active	TSS	Hlanking	regions	and
actively	transcribed	states	(Additional	Hile	1:	Figure	S18).	Finally,	after	conHirming	generally
low	mRNA	expression	in	blood	for	evCpG-associated	genes	compared	to	a	wide	panel	of
tissues	from	the	genotype-tissue	expression	(GTEX)	database	(Additional	Hile	1:	Figure	S19),
we	conclude	that	evCpGs	tend	to	lie	outside	functional	genomic	regions	in	blood.

Moreover,	we	examined	potential	enrichment	in	imprinted	regions	and	metastable	epialleles,
as	the	literature	has	highlighted	these	regions	as	potential	subjects	to	stochastic	methylation
variation.	We	found	that	evCpG-associated	genes	were	not	signiHicantly	enriched	in	imprinted
genes	(p	value = 0.8436,	Fisher’s	exact	test)	in	contrast	with	previously	reported	metastable
epiallele-like	CpGs	[33],	which	showed	almost	a	10-fold	enrichment	(p	value = 3.87 × 10 ,
Fisher’s	exact	test).	Besides,	looking	into	previously	discovered	mQTL	in	the	blood	of
adolescents	[7],	we	found	a	5-fold	depletion	with	respect	to	a	background	composed	by	the
4319	variably	methylated	CpGs	which	were	not	included	in	the	evCpG	set	due	to	missing	co-
twin	variation	and	potential	inHluence	by	genetics	(p	value = 1.34 × 10 ,	Fisher’s	exact	test).
This	was	expected	since	genetic	effects	were	expected	to	promote	inter-individual,	but	not	co-
twin	variation.	Also,	utilizing	the	EWAS	Atlas	database	[3],	we	further	tested	for	enrichment
in	previously	reported	phenotypic	associations.	A	signiHicant	enrichment	was	present	not
only	in	probes	associated	to	aging	as	expected,	but	also	to	other	traits,	such	as	gender,
ancestry,	respiratory	allergies,	some	syndromes	caused	by	mutations	in	the	epigenetic
machinery,	and	others	associated	with	pregnancy	and	early	childhood	(Additional	Hile	1:
Figure	S20).

Furthermore,	we	performed	gene	ontology	(GO)	term	enrichment	analysis.	Our	results	on
evCpGs	support	a	putative	relationship	to	development,	as	evCpG-associated	genes	are
signiHicantly	enriched	in	(nervous)	system	development	processes	(Fig.	4b).	However,	the
most	striking	result	was	the	strong	enrichment	in	“homophilic	cell	adhesion	via	plasma
membrane	adhesion	molecules”	terms,	explained	by	a	large	number	of	clustered
protocadherins	(cPCDH)-associated	CpGs.	From	the	total	evCpGs,	almost	5%	collocated	with
cPCDHs	in	a	1-Mb	stretch	on	chromosome	5	(16	out	of	333	CpGs,	p	value = 2.8·10 ,	Fisher’s
exact	test).	Such	signiHicant	GO	term	enrichment	and	collocation	was	also	observed	in	the
replicated	set	in	adipose	tissue	(12	out	154	CpGs,	p	value = 3.7 × 10 ,	Fisher’s	exact	test).
cPCDHs	are	three	combinatorial	gene	clusters	(respectively,	α,	β,	and	γ),	coding	for	homophilic
membrane	receptors	whose	promoter	choice	is	established	during	early	embryonic
neurodevelopment	via	stochastic	methylation	[34–36].	cPCDHs	are	involved	in	the	self-
recognition	of	extending	neurons	by	supplying	a	set	of	unique	membrane	receptor	identiHiers
via	combinatorial	epigenetic	silencing	of	promoters,	key	to	avoid	the	formation	of	self-
synapses,	and	hence,	short-circuits	in	the	neuronal	circuitry	(e.g.	self-avoidance).	Also,
functions	concerning	post-natal	same-lineage	preferential	synapsis	formation	in	neurons
have	been	reported	[37–40].	Little	is	known	about	the	epigenetic	behavior	of	cPCDHs	in
whole	blood	or	adipose	tissue,	although	cPCDHs	are	not	expressed	in	either	of	them
(Additional	Hile	1:	Figure	S19).	Finally,	to	search	for	other	putative	clusters	of	evCpGs
collocated	in	the	genome,	we	performed	an	unbiased	positional	enrichment,	Hinding	11	other
smaller	but	signiHicantly	enriched	loci	in	a	1-kb	window	centered	around	evCpGs	(Additional
Hile	2).
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Validation	of	clustered	protocadherins	across	technologies

Aiming	at	replicating	the	observed	methylation	differences	at	cPCDHs	on	a	different
technological	platform,	we	used	publicly	available	whole	genome	bisulHite	sequencing
(WGBS)	data	from	whole	blood	and	adipose	tissue	of	MZ	twin	pairs	(dataset-K1	(n = 7)	and
dataset-K2	(n = 7)),	from	which	5	twins	pairs	were	available	in	both	tissues	[26].	Given	that
these	datasets	do	not	include	technical	replicates,	we	were	forced	to	implement	an	extra
conservative	pre-processing	to	guarantee	reliable	results.	This	meant	excluding	sites	posing
strong	methylation	differences	between	strands,	sites	aligning	to	regions	known	to	yield
artefactual	high	coverage,	sites	with	low	or	abnormally	high	coverage,	and	lastly,	sites	that
were	not	included	in	both	MZ	twins	for	each	pair.	Additionally,	via	computer	simulations,	we
established	the	vastly	conservative	threshold	of	absolute	methylation	difference	of	40%	as
being	very	unlikely	to	have	arisen	simply	from	random	sampling	only	(see	Additional	Hile
3:	Supplementary	methods	for	details).	Per	MZ	twin	pair,	we	then	counted	sites	displaying
differences	higher	and	lower	than	the	established	threshold	within	and	outside	cPCDHs	to
perform	enrichment	analysis	(see	Additional	Hile	3:	Supplementary	methods	for	details).

With	regards	to	the	cPCDH	region,	3	out	of	6	twin	pairs	in	blood	and	3	out	of	7	in	adipose
tissue	were	signiHicantly	enriched	in	methylation	differences	larger	or	equal	to	40%
compared	to	the	background	(Fig.	4c,	Additional	Hile	1:	Figures	S21-S23);	signiHicant	twin
pairs	coincided	with	those	displaying	a	higher	coverage	in	the	cPCDH	region.	For	the	twin
pairs	not	displaying	signiHicant	enrichment,	this	may	be	due	to	the	5	to	10	times	lower
coverage	in	cPCDHs	in	these	samples.	Finally,	methylation	differences	were	visualized	for	the
two	twin	pairs	posing	higher	coverage	in	cPCDHs	that	also	displayed	signiHicant	enrichment
in	both	tissues	(Fig.	5).	In	summary,	our	discovery	in	450K	highlighted	a	strong	enrichment
for	probes	subject	to	stochastic	variation	distinct	from	epigenetic	drift	and	measurement
error	in	the	cPCDH	loci.	By	replicating	MZ	twin	discordance	on	a	different	technological
platform	we	have	not	only	gained	conHidence	on	our	claims	concerning	cPCDHs,	but	also	on
the	discovery	strategy	itself.

Fig.	5

Integration	and	visualization	of	the	cPCDH	region	(Chromosome	5)	using	IGV	and	the	MZ	twin	datasets
employed	in	this	study.	Tracks	are	highlighted	in	red	for	whole	blood	and	gold	for	adipose	tissue.	a	450K
tracks	(dark	blue	thin	bar	plots)	include	the	450K	background,	total	evCpGs	and	replicated	set	in	adipose
tissue.	b	CpGs	in	this	region	not	included	in	the	evCpG	list	but	showing	median(|Δβ |) > 0.04	across	450K
twin	cohorts	are	also	depicted	as	red	or	gold	thin	bar	plots.	c	CpGs	with	|Δβ| ≥ 0.4	(thin	bar	plots)	compared
to	background	(line	plots	of	the	normalized	density	of	CpGs)	for	the	two	twin	pairs	displaying	the	highest
WGBS	coverage,	indicating	signiHicant	enrichment	in	MZ	twin	divergence	in	the	cPCDH	loci

Discussion

This	study	was	dedicated	to	isolate	stochastic	inter-individual	epigenetic	variation,	distinct
from	epigenetic	drift,	genetic	inHluence,	and	measurement	error.	To	achieve	this,	we	made	use
of	young	MZ	twins	because	these	are	subject	to	only	limited	epigenetic	drift	effects.
Additionally,	by	requiring	equivalence	between	co-twin	and	inter-individual	dissimilarity,	we
excluded	CpGs	under	genetic	control.	Given	that	mechanisms	promoting	twin-to-twin
divergence	during	embryonic	development	and	early	life	should	potentially	generate
variation	in	every	individual,	we	claim	to	have	isolated	a	universal	source	of	epigenetic	inter-
individual	variation	that	may	individualize	even	young	MZ	twins,	as	it	does	not	rely	on
epigenetic	drift.	As	previously	stated	based	on	different	grounds	[41,	42],	our	results	conHirm
that	the	view	of	healthy	MZ	twins	posing	identical	methylomes	at	a	young	age	is	an
unrealistic	approximation	for	certain	genomic	loci.

Under	this	mindset,	we	have	separated	epigenetic	drift	from	epigenetic	changes	occurring
during	embryonic	development/early	life.	Since	it	is	unknown	whether	these	two	inHluences
operate	differently	on	evCpGs,	this	segmentation	might	seem	artiHicial	at	Hirst.	We	cannot
ignore,	however,	that	a	strong	link	between	the	deHinition	of	epigenetic	drift	and	aging	has
been	established	in	the	literature	[8,	43].	Nonetheless,	processes	occurring	during	embryonic
development	and	early	life	are	not	necessarily	related	to	aging.	For	example,	the	agouti
mouse	is	a	model	for	stochastic	developmental	variation	[44]:	a	long-terminal	repeat	from	an
intracisternal-A	murine	retrotransposon	acts	as	a	cryptic	promoter	for	the	agouti	gene,	a	key
regulator	of	fur	color	in	mice.	However,	stochastic	variable	methylation	in	the	cryptic
promoter	results	in	variable	expression	of	the	agouti	gene.	As	a	result,	genetically	identical
mice	can	give	rise	to	a	palette	of	fur	colors,	ranging	from	yellow	to	brown.	Though	it	remains
unknown	whether	evCpG	methylation	hypervariability	operates	like	an	agouti	cryptic
promoter,	we	believe	it	is	practical	to	make	such	distinction,	especially	given	the	common
misconception	that	the	epigenome	of	young	MZ	twins	is	identical	at	young	ages,	but	diverges
as	a	result	of	aging.	Given	our	evidence	obtained	from	children,	it	is	very	unlikely	that	aging
alone	occurring	between	childhood	and	adolescence	can	explain	the	observed	methylation
discordance	in	the	cohort	of	18-year-old	MZ	twins,	in	agreement	with	the	literature.	For
example,	in	[45],	they	claim	that	epigenetic	changes	occurring	between	birth	and	5 years	of
age	outclass	those	occurring	between	5	and	10 years	of	age.

On	another	note,	from	the	4652	variably	methylated	CpGs	tested,	only	333	(7%)	showed
equivalent	co-twin	and	inter-individual	variation;	hence,	93%	of	variably	methylated	CpGs
potentially	displayed	genetic	effects.	This	is	in	concordance	with	studies	claiming	that	genetic
effects	have	a	strong	impact	on	variably	methylated	CpGs	[1,	2,	5].	Hundreds	of	identiHied
evCpGs	may	seem	a	small	number	at	Hirst	glance	given	the	average	unshared	environment
component	of	81.0%	[6]	or	67.4%	in	the	blood	[5]	and	80.8%	in	the	adipose	tissue	[24]	based
on	previously	published	ACE	models.	However,	these	estimates	are	expected	to	be	strongly
biased	since	they	include	CpGs	devoid	of	inter-individual	variation,	for	which	measurement
error	accounts	for	most,	if	not	all	the	observed	variation.	We	emphasize	that	the	aim	of	this
study	was	not	to	conduct	an	exhaustive	discovery	of	all	evCpG-like	biomarkers	in	the	human
methylome	but	to	correctly	identify	a	subset	for	which	we	can	ensure	with	high	conHidence
that	measurement	error	is	not	fully	accountable	for	the	observed	discrepancies	between	MZ
twins.	As	evidence	for	such	intention,	we	excluded	a	large	proportion	of	CpGs	via	the	applied
empirical	inter-individual	variation	threshold.	We	also	employed	Bonferroni	correction,
known	to	be	over-conservative	for	(epi)genome-wide	discoveries;	as	a	result,	it	is	possible
and	plausible	that	a	proportion	of	false	negatives	remains	unidentiHied.	Furthermore,	our
discovery	pursues	pure	inter-individual	stochastic	variation,	hence	neglecting	ambivalent
CpGs	posing	mixed	deterministic	genetic	and	stochastic	epigenetic	inHluence,	except	for
minor	genetic	inHluences	not	sufHiciently	large	to	escape	the	equivalence	range.	Studies
evaluating	the	frequency	of	CpGs	subject	to	both	genetics	and	environment	exist;	particularly,
those	employing	genetic	and	environment	interaction	(GxE)	models	[46,	47]	claim	that	most
variably	methylated	CpGs	are	under	the	jointed	inHluence	of	genetics	and	the	environment
and	that	CpGs	posing	solely	environmental	inHluence	are	extremely	rare	(only	1	in	the	entire
InHinium	MethylationEPIC	array	[46]);	thus,	challenging	our	claims	on	the	hundreds	of
evCpGs	identiHied	in	the	450K.	However,	E	in	a	GxE	model	unlike	in	an	ACE	model	is	deHined
as	variation	explained	by	a	list	of	environmental	phenotypes	such	as	maternal	age,	smoking,
and	concentration	of	certain	metabolites.	As	a	result,	measurement	error,	stochastic
inHluence,	or	the	variation	associated	to	variables	not	included	in	the	model	will	end	up	being
part	of	an	unexplained	variance	term.	The	percentage	of	unexplained	variance	for	their
models	was	not	reported,	which	could	well	be	larger	than	the	percentage	of	variance
explained.	Particularly,	stochastic	inHluence	is	expected	to	be	a	key	component	in	evCpGs.
Also,	GxE	models	are	Hitted	in	cord	blood,	uninHluenced	by	the	early	life	period	that	might
contribute	to	the	hypervariability	of	evCpGs.	In	summary,	it	is	not	possible	to	extrapolate
conclusions	from	such	GxE	models	to	our	analysis	on	evCpGs	which	takes	into	account	the
total	variance,	without	including	an	unexplained	variation	term	in	the	model.

That	aside,	the	biggest	challenge	we	faced	in	this	study	was	separating	genuine	inter-
individual	methylation	variation	from	measurement	error.	Unlike	common	practices	in
previously	published	ACE	models	[5,	6],	we	have	thoroughly	tackled	the	confounding	issue
between	measurement	error	and	stochastic	variation	by	extending	our	analysis	to	both
technical	and	longitudinal	replicates.	Altogether,	we	have	provided	convincing	evidence	that
our	observations	cannot	be	explained	by	measurement	error	or	erratic	longitudinal	drift.
That	said,	we	were	unable	to	cluster	the	longitudinal	replicates	of	the	MZ	twin	pair	of	Zhang
et	al.	[19].	Even	though	we	cannot	generalize	conclusions	from	a	single	MZ	twin	pair,	it	seems
to	suggest	that	short-time	variation	surpasses	co-twin	variation	at	least	in	this	single	twin
pair.	Supporting	this	idea,	the	twin	pair	in	question	is	aged	26	at	the	time	of	sample
collection;	thus,	we	do	not	expect	strong	epigenetic	drift	contributions.	However,	we	do	not
know	with	conHidence	whether	there	were	differences	in	the	methylation	of	evCpGs	to	begin
with,	as	no	technical	replicates	were	included	at	time	point	zero.	Moreover,	we	cannot	ignore
that	the	raw	data	of	the	Zhang	et	al	was	unavailable;	since	it	is	required	for	our	pre-
processing	approach,	the	degree	of	control	was	smaller	than	in	our	core	datasets.	Moreover,
in	this	analysis,	we	used	only	296	out	of	the	333	evCpGs;	37	evCpGs	(11.1%)	were	not
available.	It	could	well	be	that	by	applying	our	careful	pre-processing	and	normalization	that
the	MZ	longitudinal	stability	incongruence	could	be	eliminated.	That	aside,	our	longitudinal
analysis	on	unrelated	individuals	of	evCpGs	in	whole	blood	and	the	replicated	set	in	adipose
tissue	provide	our	core	evidence	on	the	short-term	temporal	stability.	In	summary,	future
studies	are	required	to	shed	light	on	the	concern	of	temporal	stability	of	evCpG	methylation
in	MZ	twins,	required	for	any	practical	application.

Furthermore,	throughout	the	paper,	we	have	made	no	distinction	between	embryonic
development	and	early	life	inHluences,	which	may	require	some	explanation.	Since	evCpGs
were	discovered	in	whole	blood,	the	peculiarities	in	the	development	of	the	immunological
system	apply.	Any	successful	pregnancy	requires	the	correct	suppression	of	any
immunological	response	between	the	fetus	and	the	mother;	thus,	both	immune	systems
actively	cross-talk	to	promote	a	tolerogenic	environment	[48].	It	is	well	established	that
newborns	deviate	from	adults	in	both	the	innate	and	the	adaptive	immune	systems	[49,	50].
Soon	after	birth,	factors	such	as	the	sudden	and	massive	exposure	to	environmental	antigens
or	the	need	to	overrun	mother-embryo	allotolerance	results	in	strong	post-natal
development	[51]	that	potentially	affects	DNA	methylation	proHiles	in	blood.	There	is	a	vast
literature	regarding	changes	in	methylation	occurring	during	the	Hirst	years	of	life	further
justifying	no	need	for	distinction	between	development	and	early	life	in	whole	blood	DNA
methylation	data	[52–55].	These	changes	may	provide	a	temporal	context	to	the	variation
occurring	at	evCpGs.	However,	claims	concerning	this	period	are	often	confounded	in	tissue
as	whole	blood	extraction	or	adipose	tissue	biopsies	tend	to	be	too	invasive	for	pediatric	use.
Instead,	other	tissues	like	buccal	epithelial	tissue,	saliva,	blood	spots,	or	cord	blood	are
preferred	in	practice	for	children	or	newborns,	with	problems	of	between-tissue	variation
and	lower	technical	replicability	[56–58].	In	any	case,	the	lack	of	co-methylation	between
post-mortem	tissues	shown	here	pushes	the	balance	towards	early	life	experiences,	assuming
that	the	post-mortem	quality	has	not	altered	the	quality	of	the	epigenetic	proHiles.	There
remains	reasonable	doubt,	however,	whether	the	methylation	levels	are	Hirstly	set	during
early	development	and	then	reset	again	at	latter	stages	in	a	tissue-dependent	way.
Nonetheless,	46%	of	evCpGs	we	had	identiHied	in	whole	blood	could	be	successfully
replicated	in	adipose	tissue,	which	supports	that	the	observed	changes	in	blood	cannot	be
caused	by	imperfect	correction	of	cell	composition	differences	in	our	pipeline.	It	also
strengthens	the	conHidence	that	a	large	portion	of	our	evCpGs	are	indeed	true	positive
Hindings.	More	fundamentally,	it	suggests	the	existence	of	regions	concentrated	in	stochastic
epigenetic	variation	that	are	common	between	tissues.	We	do,	however,	acknowledge	some
limitations	in	our	replication,	such	as	a	lower	sample	size,	an	older	age	distribution	in	the
TwinsUK	cohort,	and	the	lower	control	on	preprocessing	given	the	absence	of	raw	data	Hiles.

In	addition,	our	Hindings	highlight	the	clustered	protocadherins	as	a	putative	hotspot	for
stochastic	methylation	variation	in	blood	and	adipose	tissue.	In	the	context	of	aging,	strong
DNA	methylation	variation	for	CpGs	within	these	loci	has	been	previously	reported	[11,
59–61].	In	fact,	given	the	age	distribution	of	the	MZ	twins	in	our	WGBS	validation	study,	the
methylation	differences	were	observed	at	cPCDHs	which	are	expected	to	be	a	consequence	of
not	only	developmental-early	life	stochastic	variation,	but	also	of	epigenetic	drift.	However,	as
these	loci	were	highlighted	upon	the	discovery	in	the	E-risk	twins	cohort	composed	by	18-
year-olds	(Fig.	5),	it	is	improbable	that	only	epigenetic	drift	drives	the	twin	divergence	we
observe	at	cPCDHs.	Functions	where	cPCDHs	are	expressed	in	a	combinatorial	way	to
generate	a	wide	range	of	membrane	receptors	have	been	previously	described	in	the	context
of	the	brain,	all	of	which	strictly	require	gene	expression.	However,	the	joint	evidence	of
enrichment	in	regions	with	low	[G + C],	avoidance	of	important	regions	for	gene	regulation,
association	to	genes	not	expressed	in	the	blood,	and	enrichment	in	heterochromatin	states	all
seem	to	indicate	that	the	majority	of	the	stochastic	methylation	variation	of	evCpGs	in	the
blood	may	be	the	result	of	biological	noise	rather	than	a	biological	function.	As	it	stands	for
cPCDHs	concretely,	it	is	unlikely	that	stochastic	methylation	plays	a	role	in	whole	blood	or
adipose	tissue	given	that	the	mRNA	expression	in	both	tissues	is	residual.	More	functional
studies	are	required	in	the	future	to	shed	light	on	the	epigenetic	dynamics	of	the	cPCDH	loci
in	tissues	beyond	the	brain.

Finally,	having	identiHied	hundreds	of	CpGs	displaying	MZ	co-twin	divergence	at	young	age
has	implications	for	future	practical	applications.	For	instance,	being	able	to	discriminate
between	human	individuals	has	proven	vital	in	paternity	testing,	the	determination	of
perpetrators	in	crime	and	in	the	identiHication	of	missing	persons	including	victims	of	mass
disasters.	Nowadays,	genetic	markers	rich	in	inter-individual	variation	are	routinely	exploited
to	separate	biological	samples	derived	from	different	human	individuals;	however,	current
forensic	DNA	analysis	is	unable	to	discriminate	between	MZ	twins	[62].	Extending	the
concept	from	genetic	to	epigenetic	Hingerprinting	by	making	use	of	markers	such	as	evCpGs
may	one	day	also	allow	the	discrimination	of	MZ	twins,	with	strong	repercussions	for	law
enforcement	[63].	Further	work	is	required	though	to	shed	light	on	the	feasibility	of	this
approach	for	any	practical	forensic	application;	towards	one	day	being	able	to	provide
evidence	that	is	admissible	in	court,	greater	understanding	is	required	concerning	the
measurement	error,	longitudinal	stability	in	MZ	twins,	and	the	statistical	modeling	of
uncertainty.	Beyond	forensics,	we	also	envision	further	implications	of	our	Hindings	that
branch	out	into	philosophy	regarding	the	uniqueness	of	human	beings.

Conclusions

We	have	discovered	and	characterized	hundreds	of	variably	methylated	CpGs	in	the	blood	of
young	MZ	twins	showing	equivalent	variation	among	co-twins	and	unrelated	individuals.
Being	able	to	cluster	technical	and	longitudinal	replicates	while	distinguishing	between
young	MZ	twins,	the	evCpGs	we	identiHied	here	are	enriched	in	a	stochastic	variation
component	distinct	from	measurement	error,	genetic	inHluence,	and	epigenetic	drift.
Additionally,	we	have	highlighted	the	clustered	protocadherin	region	in	blood	and	adipose
tissue	as	loci	concentrated	in	MZ	co-twin	variation	and	veriHied	our	Hindings	across
technologies.	Future	functional	studies	are	required	to	clarify	the	underlying	molecular
mechanisms	and	putative	biological	implications	of	our	identiHied	evCpG	markers.	It	has	not
escaped	our	notice	that	such	a	class	of	biomarkers	may	one	day	allow	universal	epigenetic
Hingerprinting,	which	for	instance	is	relevant	in	forensics	for	differentiating	MZ	twin
individuals,	typically	impossible	with	standard	forensic	DNA	proHiling.

Methods

450K	microarray	data	analysis

All	data	analysis	was	performed	in	R	3.4.4	(“Someone	to	Lean	on”)	[64].	We	employed	the
libraries	minHi	[65],	ENmix	[66],	wateRmelon	[67],	and	missMethyl	[68]	for	reading	IDAT
Hiles,	performing	normalization,	and	quality	control.	For	publicly	available	data	derived	from
the	GEO	database,	phenotypes	were	parsed	with	the	help	of	GEOquery	[69].	On	this	note,	we
only	chose	pre-processed	data	when	no	similar	public	data	was	available	in	IDAT	format.	The
quality	control	that	can	be	performed	on	pre-processed	data	is	inferior,	as	the	information
regarding	internal	450K	control	probes	(SNP,	out-of-band,	bisulHite	conversion	probes,	etc.)
has	been	discarded.	Also,	depending	on	the	choice	of	authors	depositing	the	dataset,
additional	information	is	often	unavailable,	such	as	detection	p	value	and	beads-per-probe
matrices,	separate	intensity	channels,	CpG-SNPs,	or	even	sex	chromosomes,	the	latter
required	for	checking	for	sex	mismatches.	Details	concerning	the	processing	of	each
individual	dataset	used	in	this	study	are	available	in	Additional	Hile	3:	Supplementary
methods.

Marker	discovery

For	the	450K	data	pertaining	the	E-risk	study,	we	removed	outlier	samples,	Hiltered-out
potentially	noisy	probes	including	low-quality	(n = 2561),	SNP-containing	(n = 99,337),	cross-
reactive	(n = 41,993)	[70,	71],	and	X-	(n = 11,232)	and	Y-chromosomal	(n = 416)	probes.	We
normalized	in	parallel	using	three	popular	methods:	stratiHied	quantile	normalization	[65],
dasen	[67],	and	oob_RELIC_QN_BMIQ	[66].	Additionally,	we	used	ComBat	[72]	and	a	modiHied
Houseman	method	[73,	74]	to	correct	for	potential	batch	effects	and	for	whole-blood	cell
composition	differences,	respectively	(Additional	Hile	1:	Figure	S5).	Following	normalization,
probes	displaying	either	ICC < 0.37	[27]	or	IQR < 0.07	were	Hiltered	out.	On	the	one	hand,	ICC
measures	the	proportion	of	non-technical	variance	compared	to	the	total	variance.	An	ICC	of
zero	indicates	that	100%	of	the	variance	could	be	explained	by	variance	between	technical
replicates	(a.k.a.	measurement	error).	In	the	450K	array,	probes	displaying	ICC	close	to	zero
are	common	and	mostly	represent	probes	lacking	any	inter-individual	variation.	On	the	other
hand,	an	IQR	of	0.07	is	expected	from	measurement	error	only	in	a	CpG	following	a	beta
distribution	with	mean = 0.5	and	standard	deviation = 0.05.

For	the	remaining	4652	CpGs,	we	computed	per	CpG	the	absolute	difference	in	methylation
for	twin	pairs	and	for	all	combinations	of	unrelated	pairs.	We	tested	for	similarity	under	the
paradigm	of	equivalence	testing	with	a	two	one-sided	tests	(TOST)	procedure	based	on	the
Yuen	t	test	that	tolerates	non-normality	[75].	We	subsequently	selected	signiHicant	CpGs	(α/n 
= 0.05/4652;	Bonferroni-corrected)	and	intersected	signiHicant	hits	across	normalizations.
Employing	several	normalization	methods	is	not	a	standard	routine	in	epigenome-wide
studies	and	was	initially	introduced	as	another	quality-control	step.	But	given	that	strong
differences	between	methods	were	observed	(Additional	Hile	1:	Figures	S3-4,	S6),	and	to	avoid
normalization	method-speciHic	outcomes,	we	decided	to	search	for	signiHicant	results	across
multiple	normalization	strategies.	The	parameter	epsilon	(ε),	which	characterizes	the
resolution	at	which	the	difference	in	two	means	can	be	deHined	as	equivalent,	was	also
established	per	normalization;	we	justify	this	choice	as	the	|Δβ|	distribution	in
twin/unrelated	pairs	highly	differed	between	normalizations.	We	based	the	selection	of
epsilon	solely	on	the	distribution	of	the	trimmed	mean	of	|Δβ| 	across	all	tested	CpGs.
Discovery	statistics	and	effect	sizes	were	visualized	via	Manhattan	and	concordance	plot,
respectively	(see	Additional	Hile	3:	Supplementary	methods	for	details).

Evaluation	of	measurement	error	and	longitudinal	stability

To	ensure	that	technical	measurement	on	its	own	cannot	explain	the	results	obtained	in	the
discovery,	we	conHirmed	similarity	in	distribution	of	number	of	beads,	detection	p	value,	and
ICC	between	signiHicant	(n = 333)	and	non-signiHicant	CpGs	(n = 4319).	Secondly,	the	set	of
evCpGs	was	evaluated	in	the	resolution	of	technical	replicates	within	MZ	twin	pairs	and	in	the
pairing	of	longitudinal	replicates	by	employing	heatmap	and	unsupervised	hierarchical
clustering.	We	compared	their	performance	with	a	set	of	negative	control	CpGs	previously
reported	for	strong	genetic	effects,	which	were	not	expected	to	resolve	between	MZ	twins	or
longitudinal	replicates.	These	derived	via	ranking	reported	blood	mQTL	CpGs	by	signiHicance
in	adolescents	from	the	ARIES	cohort	[7]	and	selecting	a	number	equal	to	that	of	available
evCpGs	in	the	given	cohort.

Assessment	of	aging	effects

For	epigenetic	clock,	we	evaluated	the	association	with	age	via	linear	regression,	where	the
dependent	variable	is	the	evCpG	methylation	value	and	the	independent	variable	is	age,
correcting	for	sex	as	a	covariate.	For	epigenetic	drift,	we	evaluated	heteroscedasticity
(increased	variance	with	age)	via	the	White	test.	We	preferred	this	option	to	an	ordinary
Breusch-Pagan	test	as	in	[11],	as	it	additionally	includes	a	quadratic	term	for	age	in	the
auxiliary	linear	model.

Replication	across	tissues

To	assess	whether	evCpG	methylation	is	subject	to	tissue-to-tissue	variation,	we	made	use	of
a	large	panel	of	post-mortem	tissues	to	achieve	a	high	number	of	tissues	per	individual;	more
details	are	available	in	Additional	Hile	3:	Supplementary	methods.	We	performed	multi-
dimensional	scaling	(MDS)	for	the	65	450K	SNP	probes,	the	genetically	controlled	CpGs
employed	previously	and	for	evCpGs.	Additionally,	we	performed	replication	of	the	discovery
in	adipose	tissue	on	dataset-I	similarly	to	evCpG	discovery	in	whole	blood,	but	in	absence	of
cell	composition	and	batch	effect	correction.	Finally,	we	tested	time	stability	of	replicated
evCpGs	on	dataset-J	for	which	temporal	ICC’s	were	estimated.

Functional	annotation

We	deeply	annotated	evCpGs	based	on	the
IlluminaHumanMethylation450kanno.ilmn12.hg19	Hile	(Additional	Hile	2).	Furthermore,	we
extracted	500 bp	up-	and	down-stream	evCpGs	and	background	via	samtools	(v1.9)	[76].	We
ran	Homer	(v4.10)	[77]	in	search	for	known	and	de	novo	motif	enrichment	analysis.	We	input
fasta	Hiles	into	R	and	computed	[G + C]	content	with	the	help	of	the	seqinr	R-package	[78].
Also,	as	part	of	Roadmap	Epigenomics	mapping	consortium	[32],	a	hidden	Markov	model	had
been	built	based	on	data	derived	from	PBMC	from	peripheral	blood,	by	which	the	whole
genome	was	segmented	into	15	categories	or	states,	ChromHMM.	The	data	was	obtained
from	the	Encyclopedia	of	DNA	Elements	(ENCODE)	(accession	ID:	ENCSR550VPH)	in	bigBed
format,	which	was	subsequently	converted	to	a	Bed	format	Hile	with	the	BigBedToBed	tool
obtained	from	the	UCSC	server	(http://hgdownload.soe.ucsc.edu/admin/exe/).	We
subsequently	annotated	all	probes	in	the	450K	with	its	respective	category	and	performed
enrichment	for	evCpGs.	On	the	same	note,	median	transcriptional	expression	levels	for	247
out	of	the	264	evCpG-associated	genes	were	extracted	from	the	GTEx	portal.	Also,	known	and
predicted	imprinted	human	genes	were	extracted	from	the	Geneimprint	database
(http://www.geneimprint.com/site/genes-by-species),	human	metastable	epiallele	CpGs
were	extracted	from	[33],	and	EWAS-associated	trait	CpG	annotation	was	obtained	from	the
EWAS	Atlas	[3],	while	mQTLs	discovered	in	the	blood	of	adolescents	were	obtained	from	[7].
Gene	Ontology	(GO)	term	enrichment	was	performed	with	the	library	missMethyl	[68]	that
can	correct	for	the	number	of	probes	per	gene.

WGBS	pre-processing

UnHiltered	processed	whole-genome	bisulHite	sequencing	(WGBS)	data	derived	from	whole
blood	belonging	to	MZ	twins	were	obtained	from	the	ArrayExpress	database	(accession	ID:	E-
MTAB-3549).	Similarly	to	[26],	we	excluded	sites	with	more	than	20%	methylation
differences	between	the	strands	or	sites	that	fell	within	the	Duke	Excluded	Regions
(https://www.encodeproject.org/annotations/ENCSR797MUY/)	or	the	DAC	Blacklisted
Regions	(https://www.encodeproject.org/annotations/ENCSR636HFF/),	known	to	yield
artefactual	high	coverage.	We	additionally	applied	both	high-	and	low-end	coverage	Hilters.
We	excluded	(i)	sites	with	coverage	less	or	equal	to	10	reads	and	(ii)	larger	than	the	per-
sample	99.9%	quantile.	Altogether,	this	procedure	improves	the	accuracy	of	the	methylation
estimates	per	site	and	Hilters	out	possible	PCR	artifacts	at	the	high	end	of	the	coverage.	Per
twin	pair,	we	then	selected	only	those	sites	that	were	common.

Via	simulations,	we	estimated	the	95%	quantile	of	the	sampling	|∆β|	distribution	to	be	0.4	for
10	reads	given	no	β	difference	between	samples	(see	Additional	Hile	3:	Supplementary
methods	for	details).	Differences	higher	or	equal	to	this	threshold	are	very	unlikely	to	have
arisen	from	random	sampling	only.	Finally,	positional	enrichment	analysis	was	performed	on
the	cPCDH	region	(chr5:140165876:140892546	for	genome	assembly	hg19).	Per	twin,	we
computed	the	number	of	sites	with	|Δβ|  ≥ 0.4	and	|Δβ|  < 0.4	within	and	outside	this
region	and	performed	a	Fisher’s	exact	test	to	obtain	an	enrichment	p	value.
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